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ABSTRACT

There are several common approaches used to obtain the

kinematic and dynamic equations which describe the motion of

robot manipulators. However, a problem arises when these

conventional body oriented robot arm kinematic equations are

used to simulate the manipulator motion. In this case, the

jocobian matrix which relates the end effector motion to

joint angle variations becomes singular when two successive

arm links align. When the robot arm passes through these

singular points, the jacobian matrix is not invertible, and

a result of this, the motion cannot be simulated. This

thesis investigates how this situation can be avoided by

using a Newton Euler approach to variable difinition, and

using the equations interpretted in a fixed reference frame.
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TABLE OF THE SYMBOLS AND ABBREVIATIONS

COMPUTER TEXT

A A Sine Wave Input Torque

Amplitude
AA Aa Acceleration of Point A
AB Ab Acceleration of Point B
AG1 Agl The Acceleration Vector

of the Center of Gravity

for Link 1
AG2 Ag2 Same as AGI but for Link

2
AG3 Ag3 Same as AGI but for Link

3
AOX aox Linear Acceleration of

Joint Zero in the X

Direction

AOY aoy Linear Acceleration of

Joint Zero in the Y

Direction
AOZ aoz Linear Acceleration of

Joint Zero in the Z

Direction
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AX axl Linear Acceleration of

Link One in the X

Direction

AY1 ayl Linear Acceleration of

Link One in the Y

Direction

AZI azI Linear Acceleration of

Link One in the Z

Direction

AX2 ax2 Linear Acceleration of

Link Two in the X

Direction

AY2 ay2 Linear Acceleration of

Link Two in the Y

Direction

AZ2 az2 Linear Acceleration of

Link Two in the Z

Direction

AX3 ax3 Linear Acceleration of

Link Three in the X

Direction

AY3 ay3 Linear Acceleration of

Link Three in the Y

Direction
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AZ3 az3 Linear Acceleration of

Link Three in the Z

Direction

BRATE1(3) Bratel Angular Velocity Vector

in Body Fixed (rotating)

Coordinate System for

Link 1 in the x, y and z

Direction Respectively

BRATE2(3) Brate2 Same as Bratel but for

the Link 2

BRATE3(3) Brate3 Same as Bratel but for

the Link 3

DEGRA Conversion from Degrees

to Radians

DRCANX(1) Direction Cosine Angle

DRCANX(2) in Degrees in Fixed

DRCANX(3) Coordinate System from X

Axis for Link 1-3

Respectively

DRCANY(I) Direction Cosine Angle

DRCANY(2) in Degrees in Fixed

DRCANY(3) Coordinate System from Y

Axis fdr Link 1-3

Respectively

DRCANZ(1) Direction Cosine Angle

DRCANZ(2) in Degrees in Fixed
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DRCANZ(3) Coordinate System from Z

Axis for Link 1-3

Respectively

DRCRAX(1) Direction Cosine Angle

DRCRAX(2) in Radians in Fixed

DRCRAX(3) Coordinate System from

X Axis for Link 1-3

Respectively

DRCRAY(1) Direction Cosine Angle

DRCRAY(2) in Radians in Fixed

DRCRAY(3) Coordinate System from

Y Axis for Link 1-3

Respectively

DRCRAZ(1) Direction Cosine Angle

DRCRAZ(2) in Radians in Fixed

DRCRAZ(3) Coordinate System from

Z Axis for Link 1-3

Respectively

DRCSX(1) The Argument of Direction

DRCSX(2) Cosine Angle in the x

DRCSX(3) Direction for Link 1-3

Respectively

DRCSY(1) The Argument of Direction

DRCSY(2) Cosine Angle in the y

DRCSY(3) Direction for Link 1-3

Respectively

10

t- -m ~ m mm I o



DRCSZ(1) The Argument of Direction

DRCSZ(2) Cosine Angle in the z

DRCSZ(3) Direction for Link 1-3

Respectively

DQ(27) DQ A 27*1 Column Matrix

Obtained by Multiplying

the MatA and MatB

FXO Fxo Computed Force in the X

Direction at Joint 0

FYO Fyo Computed Force in the Y

Direction at Joint 0

FZO Fzo Computed Force in the Z

Direction at Joint 0

FXI Fxl Computed Force in the X

Direction at Joint 1

FYI Fyl Computed Force in the Y

Direction at Joint 1

FZ1 Fzl Computed Force in the Z

Direction at Joint I

FX2 Fx2 Computed Force in the X

Direction at Joint 2.

FY2 Fy2 Computed Force in the Y

Direction at Joint 2

FZ2 Fz2 Computed Force in the Z

Direction at Joint 2

G g Gravitional Constant
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HDX(2) HDx The Time Rate of Change

of Angular Momentum of a

Two Elements Composite

Body in the X Direction

HDY(2) HDy Same as HDX but in the Y

Direction

HDZ(2) HDz Same as HDX but in the Z

Direction

I Counter

IA Row Dimension of Matrix

A and Matrix B Used in

LEQ2TF Subroutine

IER Error Parameter Used in

Subroutine LEQT2F

IDGT Accuracy Test Used in

Subroutine LEQT2F for

Iterative Improvement

IXX(3,2) Ixx A 3*2 Matrix of Moment

of Inertia for the Two

Element Composite Body

of Link 1-3 About X Axis

IYY(3,2) Iyy Same as IXX but About

the Y Axis

IZZ(3,2) Izz Same as IXX but About

the Z Axis
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IXZ(3,2) Ixz A 3*2 Matrix of Products

of Inertia for the Two

Element Composite Body

of Link 1-3 About the XZ

Coordinate Axis
IXY(3,2) Ixy Same as IXZ but for the

XY Axis

IYZ(3,2) Iyz Same as IXZ but for the

YZ Axis

IXXT(3) Total Moment of Inertia

of Link 1-3 About X Axis
IYYT(3) Same as IXXT but About

the Y Axis

IZZT(3) Same as IXXT but About

the Z Axis

IXZT(3) Same as IXXT but About

the XZ Axis
IXYT(3) Same as IXXT but About

the XY Axis
IYZT(3) Same as IXXT but About

the YZ Axis

JXO jxo Location of Joint Zero

in the X Direction

JYO jyo Location of Joint Zero

in the Y Direction
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JZO Jzo Location of Joint Zero

in the Z Direction

JX1 jxl Location of Joint One in

the X Direction

JYl jyl Location of Joint One in

the Y Direction

JZ1 jz1 Location of Joint One in

the Z Direction

JX2 Jx2 Location of Joint Two in

the X Direction

JY2 jy2 Location of Joint Two in

the Y Direction

JZ2 jz2 Location of Joint Two in

the Z Direction

L(3,2) L(3,2) A 3*2 Matrix that is the

Distance from Center of

Link to Center of Mass at

Each Link End
LCOGX(3) LCOGx A 1*3 Location of Center

of Gravity Vector for

Link 1-3 in the X

Direction

LCOGY(3) LCOGy Same as LCOGX but for

the Y Direction

LCOGZ(3) LCOGz Same as LCOGX but for

the Z Direction
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M Number of the Right Hand

Side Used in LEQT2F

MASS(3,2) Mass(3,2) A 3*2 Matrix of Mass of

Each Element that Make

Up the Composite Body

for Link 1-3
MASS1 Ml Total Mass of Link 1

MASS2 M2 Total Mass of Link 2

MASS3 M3 Total Mass of Link 3

MATA(27,27) MatA A 27*27 Matrix Consisting

of Coefficients of the

Unknown Variables

MATB(27) MatB A 27*1 Vector Consisting

of the Coefficient of

Known Variables on Input

and an Output the Solut-

ion to the Linear Equat-

ions

MATC(27) MatC A 27*1 Column Matrix

which Contains the

Elements of the Known

MatB in Simulation

Process,

MATIR, Matir Transformation Matricies

MAT2R, Mat2r from Fixed Coordinate
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MAT3R Mat3r System to Body Fixed

(Rotating) Coordinate

System for Link 1 Link 2

and Link 3 Respectively

MATIT, Matlt Transformation Matricies

MAT2T, Mat2t from Body Fixed

MAT3T Mat3t Coordinate System to Yaw

Pitch and Roll-Angles

Coordinate System for

Link 1 Link 2 and Link 3

Respectively

MI Results From Subroutine

CPROD, I Component of

Vector Cross Product

MJ J Component of Vector

Cross Product

MK K Component of Vector

Cross Product

MIAO,MJAO Cross Product Between

and MKAO WD1 and RB/G1 at Joint

Zero Link One, in X, Y, Z

Direction

MIBO,MJBO Cross Product Between

and MKBO W1 and RB/G1 at Joint

Zero Link One, in X, Y, Z

Direction
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MICOMJCO Cross Product Between

and MKCO Wl and MIBO, MJBO, MKBO

at Joint Zero Link One,

in X, Y, Z Direction
MIAI,MJA1 Cross Product Between

and MKA1 WD1 and RA/Gi at Joint

One Link One, in X, Y, Z

Direction
MIB1,MJB1 Cross Product Between W1

and MKB1 and RA/Gi at Joint One

Link One, in X, Y, Z

Direction

MICI,MJC1 .Cross Product Between Wi

and MKC1 and MIB1, MJB1, MKB1 at

Joint One Link One, in X,

Y, Z Direction
MIA2,MJA2 Cross Product Between

and MKA2 WD2 and RB/G2 at Joint

One Link Two, in X, Y, Z

Direction
MIB2,MJB2 Cross Product Between W2

and MKB2 and RB/Gi at Joint One

Link Two, in X, Y, Z

Direction
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MIC2,MJC2 Cross Product Between W2

and MKC2 and MIB2, MJB2, MKB2'at

*Joint One Link Two, in X,

Y, Z Direction

MIA3,MJA3 Cross Product Between

and MKA3 WD2 and RA/G2 at Joint

Two Link Two, in X, Y, Z

Direction

MIB3,MJB3 Cross Product Between W2

and MKB3 and RA/G2 at Joint Two

Link Two, in X, Y, Z

Direction

MIC3,MJC3 Cross Product Between W2

and MKC3 and MIB3, MJB3, MKB3 at

Joint Two Link Two, in X,

Y, Z Direction

MIA4,MJA4 Cross Product Between

and MKA4 WD3 and RA/G3 at Joint

Two Link Three, in X, Y,

Z Direction

MIB4,MJB4 Cross Product Between W3

and MKB4 and RA/G3 at Joint Two

Link Three, in X, Y, Z

Direction
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MIC4,MJC4 Cross Product Between W3

and MKC4 and MIB4, MJB4, MKB4 at

Joint Two Link Three, in

X, Y, Z Direction

N Order of MATA and # of

Rows in MATB

P Phase Angle of Sine Wave

PTRY(1) Pitch Angle in Radians

PTRY(2) for Link 1-3 Respectively

PTRY(3)

PTCANY(1) Pitch Angle in Degrees

PTCANY(2) for Link 1-3 Respectively

PTCANY(3)

RADEG Conversion from Radians

to Degrees

RATE1(3) Ratel Angular Velocity Vector

in Yaw Pitch and Roll

Coordinate System for

Link 1 in the x, y and z

Direction Repectively

RATE2(3) Rate2 Same as Ratel but for

the Link 2

RATE3(3) Rate3 Same ds Ratel but for

the Link 3
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RX(3,2) Rx(3,2) A 3*2 Matrix Consisting

of the Distance from the

COG of the Link to Center

of for Elements of Link

1-3 in the X Direction

RY(3,2) RY(3,2) Same as RX(3,2) but in

the Y Direction

RZ(3,2) Rz(3,2) Same as RX(3,2) but in

the Z Direction

RAG1(3) ra/G1 A 1*3 Vector, Distance

of Point A to COG for

Link One, in X, Y, Z

Direction

RBG1(3) rb/G1 A 1*3 Vector, Distance

of Point B to COG for

Link One, X, Y, Z Direct-

ion

RAG2(3) ra/G2 A 1*3 Vector, Distance of

Point A to COG for Link

Two, in X, Y, Z Direction

RBG2(3) rb/G2 A 1*3 Vector, Distance of

Point B to COG for Link

Two, ih X, Y, Z Direction
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RBG3(3) rb/G3 A 1*3 Vector, Distance of

Point B to COG for Link

Three, in X, Y, Z

Direction

RLRZ(1) Roll Angle in Radians for

RLRZ(2) Link 1-3 Respectively

RLRZ(3)

ROLANZ(1) Roll Angle in Degrees for

ROLANZ(2) Link 1-3 Respectively

ROLANZ(3)

SUMHDX(3) HDx A 1*3 Vector, Sum of the

HDX for the Two Elements

of Link 1-3 in the X

Direction

SUMHDY(3) HDy Same as HDX but in the Y

Direction

SUMHDZ(3) HDz Same as HDX but in the Z

Direction

TOX,TOY, Tox,Toy Input Torque at Joint 0

TOZ Toz in X, Y, Z Direction

T1X,T1Y Tlx,Tly Input Torque at Joint One

T1Z Tlz in X, Y, Z Direction

T2X,T2Y T2x,T2y Input Torque at Joint Two

T2Z T2z in X, Y, Z Direction

TIPX,TIPY Position of the End
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TIPZ Effector

VECTAO(3) 1*3 Vector Used in Subro-

VECTBO(3) utine CPROD for Joint

Zero

VECTAl(3) 1*3 Vector Used in Subro-

VECTB1(3) utine CPROD for Joint'One

VECTA2(3) 1*3 Vector Used in Subro-

VECTB2(3) utine CPROD for Joint Two

VECTA(3) 1*3 Vector Used in Subro-

VECTB(3) utine CPROD

W w Frequency of Sine Input

WG1,WG2 wgl,wg2 Weight of Links 1, 2, 3

WG3 wg3

W1(3) wl(3) A 1*3 Vector of the

Angular Velocity of Link

1 in x, y, and z

Direction Respectively

W2(3) w2(3) Same as W1(3) but for

the Link 2

W3(3) w3(3) Same as W1(3) but for

the Link 3

WDX(3) wdx(3) Angular Acceleration of

Link i-3 in the X

Direction
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WDY(3) wdy(3) Angular Acceleration of

Link 1-3 in the Y

Direction

WDZ(3) wdz(3) Angular Acceleration of

Link 1-3 in the Z

Direction

WKAREA Work Area for the LEQT2F

X1,X2,X3 Location of the COG for

Link 1-3 in the X

Direction

Y1,Y2,Y3 Location of the COG for

Link 1-3 in the Y

Direction

YWXR(1) Yaw Angle in Radians for

YWXR(2) Link 1-3 Respectively

YWXR(3)

YAWANX(1) Yaw Angle in Degrees for

YAWANX(2) Link 1-3 Respectively

YAWANX(3)

Z1,Z2,Z3 Location of the COG for

Link 1-3 in the Z

Direction
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I. INTRODUCTION

The study of robotics is a fairly new discipline.

Although the roots of these studies and developments can be

traced back to the 1940's, the first commercial computer

controlled robot was not introduced until the late 1950's

[Ref. 1]. Furthermore, as the theory developed, several

common problemmatical methods have been widely accepted and

used.

When robot motion is studied, it is usually divided

into two parts: robot arm dynamics and robot arm kinematics.

While the kinematics problem deals with the geometry of the

arm links, the dynamics problem deals with the study of

forced motion. The dynamics problem is further divided into

two parts: the direct dynamics problem and the inverse

dynamics problem. In the inverse dynamics problem, link

variables such as acceleration and velocity are known and

the forces and necessary joint torques for the desired

motion are calculated. In the direct dynamics problem, the

joint torques are known and the accelerations and velocities

of each joint are calculated.

The kinematics problem is also divided into two parts:

the direct kinematics problem and the inverse kinematics

problem. The direct kinematics problem is, given a set of

critical geometric joint and link variables for each of the

25



joint-link pairs and the joint angle vector, determine the

position and orientation of the end effector of the

manipulator. The Denavit-Hartenberg representation, which

uses a homogeneous transformation matrix to describe the

spatial relationships between two adjacent rigid mechanical

links is the most common method used to study the direct

kinematics problem [Ref. 2]. The inverse kinematics problem

is, given a desired position and orientation of the end

effector of the manipulator and a set of critical geometric

joint and link parameters, determine the corresponding joint

angle vector; i.e., find all of the joint angles of the

robot arm so that the end effector can be positioned in the

desired location.

A difficulty in the solution to the inverse kinematics

problem arises when two successive links align [Ref. 3]. At

these times the angle between two successive links becomes 0

or 180 degrees, and the Jacobian matrix which relates the

end effector motion to the joint variable variations cannot

be inverted. This means that motion cannot be simulated.

Different approaches to this problem have been investigated.

One method deals with the Newton-Euler approach with a

moving coordinate system [Refs. 4, 5], another uses the

Langrangian approach [Refs. 6, 7]. One method deals with a

virtual work approach [Ref. 8]. Kane's dynamics equations

have been used due to computational efficiency [Ref. 9].
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However, none of these methods have been able to overcome

this singularity problem [Ref. 3].

Several methods have been proposed to avoid the

singular configuration. One method proposed to minimize the

time near the singular points [Ref. 10], thereby reducing

their effects. In another method, it was proposed to avoid

these singular points by confining the motion [Ref. 11].

Other solutions deal with presenting equations that can

translate the manipulator in the neighborhood of a

singularity through identification of singular points

beforehand [Refs. 12, 13, 14]. It has also been shown that

the redundancy of robot manipulators is effective in dealing

with the singularities [Refs. 15, 16, 17].

In this thesis the equations of motion are derived

using the principles of Newtonian dynamics in terms of a

globally fixed coordinate system to overcome the singularity

problem. Each link is treated as a free body with forces

and moments applied at the joints and free body analysis is

used to derive the equations of moticn. Although the

equations are relatively long and the solution to the

problem is computationally time consuming, it is shown that

these equations do overcome the singularity problem. The

direct dynamics and the inverse dynamics problem are both

simulated.
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II. THEORETICAL DEVELOPMENT

A. THEORY OF THE SOLUTION

To derive the non-singular equations of motion the

Newton-Euler approach is used (Figure 1). Each link is

treated as a free body with forces and moments applied to

it, weight has been disregarded. The globally fixed X Y Z

coordinate system is used for the equations. All links are

assumed to be rigid, so the effects of flexibility are not

considered. All of the distances and the directions of the

forces and moments have been based on the fixed coordinate

system rather than a local coordinate system which moves

with the link [Refs. 4, 5]. The link masses, the initial

link positions and the orientations are assumed to be known

parameters. As a result of equation derivation in the fixed

reference frame, the moment of inertia is allowed to change

with respect to time and is calculated for each small

integration interval. This is opposed to keeping inertia

constant as used in the local coordinate formulations. But

it is assumed that the moment of inertia is constant in each

small integration interval. This last assumption

effectively linearizes the equations of motion so that a

non-singular matrix inversion can be used to solve the

equation set.

28



\-a

ri

I--

Figure 1. Free Body Diagram of a Three Link Manipulator
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To calculate the moment of inertia in each integration

interval, the link direction cosine angles with respect to

the fixed coordinate system were used. Acceleration of

joint zero was input as zero. For each link the three

linear acceleration components, three angular acceleration

components and forces at each joint were considered to be

the unknown variables. Based on the Newtonian dynamics and

the manipulator kinematics (Ref. 18], the equations were

derived as follows:

B. DYNAMIC EQUATIONS OF MOTION OF LINK ONE

1. Sum of Forces Equations

In the free body analysis of link one (Figure 1) the

sum of the forces in the x direction is:

XFx = Fxl - FxO = Mlaxl (1)

Similarly sum of the forces in the y direction is:

ZFy = Fyi - FyO = Mlayl (2)

and the sum of the forces in the z direction is:

XFz = Fzl - FzO - W1 = Mlazl (3)
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2. Joint Ecuations

We begin by evaluating the joint equations at joint

zero [Ref. 19, equation (8/4), pp. 423]. If the joint is

sequested and analysis conducted at a point on link zero

(subscript a) and another at a point on link one (subscript

b) that is common to both, so when linked together they are

equal. This results in two equations and the two unknowns

wdl and wl. As a result:

Aa = Ao

which is the acceleration at joint zero, and

Ab = Al + (wdl x rb/Gl) + wl x (wl x rb/Gl)

which is the acceleration of point b on joint one. Here

rb/G1 is the distance from point b to the center of gravity

of link one, and Al is the acceleration at the center of

mass of link one or,

rb/Gl = (JxO-LCOGxl)i + (jyO-LCOGyl)j + (jzO-LCQGzl)k

= rb/Glx + rb/Gly + rb/Glz

After equating Aa and Ab and having the known variables on

the right side of the equation and unknown variables on the

left side the following sets of equations result:
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Axi + wdyl(rb/Glz) -wdzl(rb/Gly) =Aox - 11100 (4)

where KICO equals

wylwxl(rb/Gly) - (wyl)2(rb/Glx) -(wzl)2(rb/Glx)

+ wzlwxl(rb/Glz)

also

Ayl + wdzl(rb/Glx) -wdxl(rb/Glz) =Aoy - MJCO (5)

whe re MJCO equals

wzlwyl(rb/Glz) - (wzl)2(rb/Gly) -(wxl)2(rb/Gly)

+ wxlwyl(rb/Glx)

and

Azi + wdxl(rb/Gly) - wdyl(rb/Glx) Aoz - MKCO0 (6)

MKCO0 equals

=wxlwzl(rb/Glx) - (wzl)2(rb/Glz) -(wyl)2(rb/Glz)

+ wylwzl(rb/Gly)

3. Sum of Moment Equations

Computing the sum of the moment equations about the

center of gravity results in:
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I1 (rO/Gi x FO) + (ri/Gi x F1) - Ti + TO

where the vector rO/Gi is the distance from joint zero to

the center of gravity of link one and vector ri/Gi is the

distance from' joint one to the center of gravity of link

one, in the x, y and z directions. Such that

rO/Gi rjO - rGl

and

ri/Gi = rji - rGl

so

riO - rGl =xWO -xGl)i + (yjO - yGl)j + (zjO - zGl)k

and

nil - rGl (xji xGl)i + (yjl - yGI)j + (zjl - zGi)k

In the x, y and z directions the sum of moment equations

are:

EMi in x direction

(YJO/G1)FzO + (zjO/G1)FyO + (yjl/G1)Fzl - (zjl/Gi)Fyl

- Tix + TOx (7a)

Y.X1 in y direction=

(zjO/GI)FxO + (xjO/Gi)FzO + (zji/Gli,Fxi - (xjl/Gi)Fzi

-Tiy + TOy (8a)
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IMi in z direction=

(xjO/Gl)FyO + (yjO/G1)FxO + (xjl/GI)Fyl - (yjl/Gl)Fxl

-Tiz + TOz (9a)

From (Ref.19, equation (57), pp. 227] the sum of the moments

about a fixed point that does not move with the body is

equal to the time rate of change of angular momentum of the

system (H) about the fixed point, IM = H. In the present

study we have let each link be a composite body of two

elements. The angular momentum (H) for a composite body

where the number of elements of the body is two, about the

center of gravity of each link is Hi = Z (Ri x (w x

Ri)]Mi, where Ri is the distance from the center of gravity

of each link to the appropriate element (1 or 2) in the x, y

and z direction. So:

Hx = I [Ryi(wx(Ryi) - wy(Rxi)) - Rzi(wz(Rxi)-

wx(Rzi))]Mi

Hx = CR2 yl(wx) - Ryl(Rxl)(wy) - Rzi(Rxl)(wz) +

R2zl(wx)]Mi + [R2y2(wx) - Ry2(Rx2)(wy)-

Rz2(Rx2)(wz) + (R2z2)wx]M2

If Ixx Ry2 + Rz2 dm,

and Ixy RxRy dm,

and Ixz RxRz dm,
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then:

Hx [Ilxx(wx) - Ilxy(wy) - Ilxz(wz)]Ml

+ EI2xx(wx) - 12xy(wy) - I2xz(wz)]M2

and

HDx [Ilxx(wdx) - Ilxy(wdy) - Ilxz(wdz)]Ml

+ CI2xx(wdx) - I2xy(wdy) - I2xz(wdz)]M2 (7b)

by assuming the moment of inertia changes with time but is

constant for a given time interval.

By similar analysis it can be shown:

Hy 2 [Rzi(wy(Rzi) - wz(Ryi)) - Rxi(wx(Ryi)-

wy(Rxi) - wy(Rxi))]Mi

and if Iyy = Rx2 + Rz2 dm,

and Iyz = RyRz dm,

and Ixy = RxRy dm,

then:

HDy [Ilyy(wdy) - Ilyz(wdz) - Ilyz(wdx)]M1

+ CI2yy(wdy) - I2yz(wdz) - I2yx(wdx)]M2 (8b)

and

Hz = [ Rxi(wz(Rxi) - wx(Rzi)) - Ryi(wy(Rzi)-

wz(Ryi))]Mi

if Izz Rx2 + Ry2 dm,

So Hz [Ilzz(wz) - Ilyz(wy) - Ilzx(wx)!M1

+ EI2zz(wz) - I2yz(wy) - I2zx(wx)]M2
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then

HDz [Ilzz(wdz) - Ilyz(wdy) - Ilzx(wdx)]M1

+ [12zz(wdz) - I2yz(wdy) - 12zx(wdx)]M2 (9b)

Combining equations (7a) and (7b) and keeping known

variables on the right side and unknown variables on the

left side yields:

MN1x = (-yjO/G1)FzO + (zjO/G1)FyO + (yjl/G1)Fzl

- (zJl/Gl)Fyl - HDx = Tix - TOx (7)

Combining equations (8a) and (8b) yields:

ZM~y = (-zjO/GI)FxO + (xjO/Gl)FzO + (zjl/Gl)Fxl

- (xjl/G1)Fzl - HDy = Tly - TOy (8)

Combining equations (9a) and (9b) yields:

IM1z = -(xjO/G1)FyO + (yjO/G1)FxO + (xjl/G1)Fyl

- (yJl/Gl)Fxl - HDz = Tlz - TOz (9)

C. LINK TWO EQUATIONS

1. Sum of Forces Equations

From the free body diagram (Figure 1) it follows

that
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IFx = Fx2 - Fxl = M2ax2 (10)

IFy = Fy2 - Fyl = M2ay2 (11)

IFz = Fz2 - Fz1 = M2az2 (12)

2. Joint Eauations

Analysis is conducted at joint one where similar

equations are used as in joint zero with a point on link one

(a) and one on link two (b). For point a the equation is

Aa = A1 + wdl x ra/G1 + wl x (wl x ra/G1)

ra/G1 is a vector whose distance is measured from point a to

the center of gravity of link one in the x, y and z

direction.

ra/Gi = (jxl - LCOGx1)i + (jyl - LCOGyl)j

+ (jzi - LCOGzI)k

= ra/GIx + ra/Gly + ra/Glz

For point b the equation is:

Ab A2 + wd2 x rb/G2 + w2 x (w2 x rb/G2)
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where rb/G2 is a vector whose distance is measured from

point b to the center of gravity of link two.

rb/G2 =(ixI - LCOGx2)i + (JYl - LCOGy2)j

+ (jzl - LCOGz2)k

= rb/G2x + rb/G2y + rb/G2z

Equating Aa and Ab and setting knowns and unknowns

on the respective sides of the equation results in:

Ax2 - Axi + wdy2(rb/G2z) - wdz2(rb/G2y) -wdyl(ra/Glz)

+ wdzl(ra/Gly) = ICI - M1C2 (13)

MICi wylwxl(ra/Gly) - (wyl)2'ra/Glx) -(wzl)2(ra/Glx)

+ wzlwxl(ra/Glz)

MIC2 =wy2wx2(rb/G2y) - (wy2)2(rb/G2x) -(wz2)2(rb/G2x)

+ wz2wx2(rb/G2z)

Ay2 - Ayl + wdz2(rb/G2x - wdx2(rb/G2z) - wdzl(ra/Glx)

+ wdxl(ra/Glz) =MJC1 - MJC2 (14)

MJC1 = wzlwyl(ra/Glz) - (wzl)2(ra/Gly) - (wxl)2(ra/Gly)

+ wxlwyl(ra/Glx)

38



MJC2 wz2wy2(rb/G2z) -(wz2)2(rb/G2y) - (wx2)2(rb/G2y)

+ wx2wy2(rb/G2x)

AZZ AMi + wdx2(rb/G2y) - wdy2(rb/G2x) - wdxi(ra/Gly)

+ wdyi(ra/Gix) =MKCi - MKC2 (15)

MKC1 =wxlwzl(ra/Glx) - (wxi)2(r&/Glz) - (wyl)2(ra/Giz)

+ wyiwzl(ra/Gly)

MKC2 = wx2,wz2(rb/G2x) - (wx2)2(rb/G2z) - (wy2)2(rb/G2z)

+ wy2wz2(rb/G2y)

3. Sum of the Moment Equations

These equations have a similar development as that

of link one:

IM2 =(rjl/G2) x F1 + (rj2/G2) x F2 + Ti - T2

where

rjl/G2 =(xii - xG2)i + (yjl - yG2)j + (zjl - zG2)k

rj2/G2 =(xj2 - xG2)i + (yj2 - yG2)j + (zj2 - zG2)k

SM12x -(yji - yG2)Fzl + (zjl - zG2)Fyl

" Wy2 - YG2)Fz2 - (zj2 - zG2)Fy2

" Tix - T2x (16a)
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~My =-(zjl - zG2)Fxl + (XjI - xG2)Fzl

+ (zJ2 - zG2)Fx2 - (xj2 - xG2)Fz2

+ Tly -T2y (17a)

ZM2z -(xjl - xG2)Fyl + (yjl - yG2)Fxl

+ (xj2 - xG2)FY2* (yj2 - yG2)Fx2

+ Tlz -T2z (18a)

From angular momentum equation developed for link one, it

can be shown for link two:

~Mx =HDx (16b)

~My = HDy (17b)

ZM2z =HDz (18b)

Combining equations (16a) and (16b) the following

result:

- (yjI - yG2)Fzl + (zi zG2)Fyl + (yj2 - yG2)Fz2

- (zJ2 - zG2)Fy2 -HDx -Tix + T2x (16)

Combining equations (17a) and (17b) yield the

following result:

- (zji - zG2)Fx1 + (xjl - xG2)FzI + (zj2 - zG2)Fx2

- (xj2 - xG2)Fz2 - HDy -Tly + T2y (17)
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Combining equations (18a) and (18b) yield the

following result:

- (xil - xG2)Fyl + (yjl - yG2)Fxl + (xj2 - xG2)Fy2

- (yj2 - yG2)Fx2 - HDz -Tlz + T2z (18)

D. LINK THREE EQUATIONS

1. Sum of Forces Equations

Following similar logic from that previously

developed:

ZFx - Fx2 = M3ax3 (19)

ZFy - Fy2 = M3ay3 (20)

EFz - Fz2 - W3 = M3az3 (21)

2. Joint Equations

With point a on link two and point b on link three

one gets for joint equations at joint two:

Aa = A2 + (wd2 x ra/G2) + w2 x (w2 x ra/G2)

where ra/G2 is a vector whose distance is measured from

point a to center of gravity of link two in the x, y and z

direction.
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ra/G2 = (Jx2 - LCOGx2)i + (jY2 -LCOGy2)j

+ (Jz2 - LCOGz2)k

= ra/G2x + ra/G2y + ra/G2z

For point b

Ab = A3 + wd3 x rb/G3 + w3 x Nw3 x rb/G3)

where rb/G3 is a vector whose distance is measured from

point b to center of gravity of link three in the x, y and z

direction.

rb/G3 =(Jx2 - LCOGx3)i + (jy2 - LCOGy3)j

+ (jz2 - LCOGz3)k

=rb/G3x + rb/G3y + rb/G3z

Equating Aa and Ab and setting knowns and unknowns on the

respective sides of the equation results in:

Ax3 - Ax2 + wdy3(rb/G3z) - wdz3(rb/G3y) -wdy2(ra/G2z)

+ wdz2(ra/G2y) =MIC3 - MIC4 (22)

MI03 =wy2wx2(ra/G2y) - (wy2)2(ra/G2x) -(wz2)2(ra/G2x)

+ wz2wx2(ra/G2z)

111C4 =wy3wx3(rb/G3y) - (wy3)2(rb/G3x) -(wz3)2(rb/G3x

+ wz3wx3(rb/G3z)
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Ay3 - Ay2 + wdz3(rb/G3x) -wdx3(rb/G3z) -wdz2(ra/G2x)

+ wdx2(ra/G2z) =MJC3 - MJC4 (23)

MJC3 =wz2wy2(ra/G2z) - (wz2)2(ra/G2y) -(wx2)2(ra/G2y)

+ wx2wy2(ra/G2x)

MJC4 = wz3wy3(rb/G3z) - w2z3(rb/G3y) - w2x3(rb/G3y)

+ wx3wy3(rb/G3x)

AZ3 - AZ2 + wdx3(rb/G3y) - wdy3(rb/G3x) -wdx2(ra/G2y)

+ wdy2(ra/G2x) =MKC3 - MKC4 (24)

MKC(3 =wx2wz2(ra/G2x) - (wx2)2(ra/G2z) -(wy2)2(ra/G2z)

+ wx2,wy2(ra/G2y)

MKC(4 =wx3wz3(rb/G3x) - (wx3)2(rb/G3z) -(wy3)2(rb/G3z)

+ wy3wz3(rb/G3y)

3. Sum of Mloment Eguations

As in the development of the equations for link one:

XM3 = (rj2/G3) x F2 + T2

where

rJ2/G3 =(xJ2 - xG3)i + (yj2 - yG3)j + (zj2 - zG3)k

=xj2/G3 + yj2/G3 + zj2/G3
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XM3x =(-YJ2/G3)Fz2 + (zj2/G3)Fy2 + T2x (25a)

MY= (-zJ2/G3)Fx2 + (xJ2/G3)Fz2 + T2y (26a)

IM3z =(-xj2/G3)Fy2 + (yj2/G3)Fx2 + T2z (27a)

From the angular momentum theory:

IM3x HDx (25b)

ZMy HDy (26b)

ZM3z HDz (27b)

Combining equations (25a) and (25b) the following results:

(-yj2/G3)Fz2 + (zj2/G3)Fy2 - HDx -T2x (25)

Combining equations (26a) and (26b) the following results:

(-zJ2/G3)Fx2 + (xj2/G3)Fz2 - HDy -T2y (26)

Combining equations (27a) and (27b) the following results:

(-xj2/G3)Fy2 + (yj2/G3)Fx2 - EIDz T2z (27)
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III. COMPUTATIONAL APPROACH

A. PROGRAM MATRICIES

The Dynamic Simulation Language (DSL) was used to

simulate the motion. This computer code was compiled on an

IBM 3033 computer by using the FORTVS compiler and all of

the calculations have been done in double precision. The

entire simulation process is shown in Figure 2 and is

discussed below.

The principle program matrix, Matrix A (MATA, 27*27),

was created from the coefficients of the unknown variables

in equations 1 to 27. In the simulation of the direct

dynamics problem, a corresponding 27*1 Matrix B (MatB) was

generated from all known variables, also from equations 1 to

27. A subroutine CPROD was used to perform all the cross

product terms required in the main program. The resulting

equations are shown in Figure 3, in the final matrix form.

During a simulation time step, the link inertias, the link

velocities and the link positions were all assumed constant.

IMSL subroutine LEQT2F was called to invert the matrix A and

get the generalized solution x from Ax = B. This subroutine

uses Gaussian elimination with iterative improvement to get

a high accuracy solution to the problem. The output from

LEQT2F then returns as MATB, which contains the solution to

the equations. The outputs were used by DSL to integrate

45



MAA(27*27)I iCOEF. OF M-1NUtS~l

f A X

! ;f V v LC

i [ ~~~TRANS FORM AT 1 ON(I:."TIA
FROMi X Y Z TO

DIR. COSINES

Figure 2. Computer Simulation Flow Chart

46

i.. . ............ .. ...... =.==..m - = ,,m m mmm m l "|



r w . T. , Cd,

_ -_

I , I ' ,_

a C,

- -- - -

I. .0

I -- 1-

1 f-- --
~T

,_ _ _-..

' 4

Fu 3 Mr Entries

4-7



the linear and angular accelerations of each link to get the

linear and angular velocities respectively. The linear

velocities for each link were next integrated to get the

linear displacements of center of gravity of each link.

Although the linear velocities in the fixed reference frame

can be integrated to get the linear displacements, this idea

is not true for the angular displacements [Refs. 20, 21].

To get the angular displacements, a set of

transformation matrices must be used on the velocities, then

the motion can be integrated. That is, the angular

velocities of each link in the fixed reference system must

first be converted into t ailavences in a body fixed

coordinate system then into body Euler rates and Euler

angles to define the motion unambigously. In this thesis,

the body coordinate velocities are called Bratel, Brate2 and

Brate3 for the link one, link two and link three

respectively. To convert these velocities into the Euler

rates, another transformation matrix is used. That is, the

transformation matrix is multiplied by body rates to get the

Euler angle rates for each link. These later rates are

defined as the Yaw rate (about the x axis), the Pitch rate

(about the y axis) and the Roll rate (about z axis). These

rates are called as Ratel, Rate2 and Rote3 for link one,

link two and link three. After the transformation of

velocities to the Euler rates, they can be directly

integrated to get the Euler angles. In this thesis, these
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angles are called the Yaw, pitch and Roll angles about th.. x

y z axis respectively [Refs. 2, 20].

This convention is very important and should not be

mixed with another set of Euler angles described differently

in the literature (Refs. 3, 20]. In addition to that, the

order of the rotation must be decided beforehand. This is

true because the orientation of objects is different when

they are rotated in a different order, i.e., first the

rotation about x axis, then a rotation about the y axis,

finally a rotation about the z axis will produce a different

orientation in space than the one which was defined and used

in this thesis (z, y, then x). The transformation matrices

used here are valid as long as the assumed order of the

rotation is retained.

In the literature, a quite different set of angles is

used to describe the orientation [Refs. 2, 3]. While some

of these angles define the orientation with respect to a

non-orthogonal coordinate system some others may define with

respect to an orthogonal system. Euler angles define an

independent set of coordinates system which are not

orthogonal. Therefore, all three coordinates are

independent from each other and velocities in this

coordinate system can be directly integrated to get the

relevant angles. They describe the unique orientation of

the body in space. The orthogonal set of coordinate axes do

not form an independent coordinate system. This is true
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since the three axis have a certain relation with each other

in any position, i.e., direction cosine angles have a unique

relation in a fixed reference system and cannot be obtained

by integrating any velocity in an orthogonal coordinate

system. The velocities in an orthogonal coordinate system

must thus be converted to a nonorthogonal coordinate system

(e.g. Euler angle rates) prior to integration.

After Yaw, Pitch and Roll angles are calculated, it is

possible to go back and express the orientation of the body

with the direction cosines in an orthogonal coordinate

system. The columns of the transformation matrix from one

orthogonal set of axes to another describes the orientation

of the new coordinate axis with respect to old coordinate

system. So, a transformation matrix can be used to get the

direction cosine angles. The direction cosines of each link

are then used to calculate the moment of inertia of the

links. The variation of a link inertia with respect to time

was shown in Figure 4 as it was calculated during a

simulation run. The derivation of the transformation

matrices is shown in Appendix A.

B. CONSTRAINTS IN THE SIMULATION PROGRAM

In the development of the equatioas, thus far, each

link has been treated such that it can move in space without

any constraint. For most cases, however, degrees of freedom
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of each link must be reduced so that the link can move only

in the direction permitted by its joint.

In the simulation of the direct dynamics problem, the

base rotation is transmitted to the second and third links

for the three revolute joint arm which was studied. This

was simulated by allowing the first link to rotate only

about Z axis. At the same time, the rotational rates of the

second and third links about the Z axis were made equal.

To make any of the simulation variables zero, meaning

no variation in that direction, one zeroes the related rows

and columns in MatA putting I on the diagonal. At the same

time, if the same row in MatB is made zero, the

corresponding mathematical expression for this equation will

be in the form of 1 * X = 0, and a result of this, X will be

equal zero. This idea can also be applied to MatA and MatB

to make two variables equal so that X1 - X2 = 0. Thus, the

above motion was simulated by constraint.

C. PROGRAM VALIDATION

The validation of the inverse dynamics problem has been

conducted in several cases. In this approach the idea was

to choose an angular acceleration such that at a certain

time, two of the three links would align. In other words,

the links would be in a singular position at this time, and

if the simulation procedure worked, the singularity problem

would have been avoided.
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The validation procedure is shown in Figure 5. For

this procedure link two angle was chosen as e = (Pi/2) *

sin(pi/2) * Time. This time dependent function has a period

of 4 sec and an amplitude of 90 degrees. The second

derivative of this function is e - ((pi**3)/8) * sin(pi/2)

* Time and corresponds to the angular acceleration of the

link. This value was input as the theoretical angular

acceleration in the simulation program, and corresponding

linear accelerations and forces at each joint were

calculated. The other two links were forced to have zero

rotational velocity throughout the simulation.

To apply a corresponding torque at the joint, MaTA and

MatB were multiplied and a right hand side matrix DQ (27*1)

was obtained (MATA * MATB = DQ). This matrix DQ (27*1) was

used to solve the simulation equations in the form of

AX = DQ. The vector X (that is, theta) was fedback in the

loop and the theoretical and the calculated values of theta

were compared.

The above discussion has been implemented in three

different initials configuration as shown in Figure 6. To

force the arm links to the various singular points, several

different plane motions were simulated. For each

configuration, three different angular motions were input

for link 2, or as can be seen from Figure 6, for each

configuration, one angular velocity caused a spinning motion

of the link about the axis with which it was initially
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aligned, while the other two produced a plane motion

according to direction of the applied angular motion. The

angles between two successive links were measured for each

motion. Figure 7 shows the angle variation between link 1

and link 2, and link 2 and link 3 corresponding to an

angular acceleration applied in the X direction for

configuration A. As can be seen from Figures 7 and 8, two

successive links pass through the singular points every 2

seconds, i.e., they align and the angle between links

becomes either 0 or 180 degrees. (The singular points are

marked on the graph). Figure 8 shows the angle variations

for an angular motion applied in the Z direction for

configuration A. In this case, it is obvious that the angle

between link 1 and link 2 is always constant (90 degrees).

The second graph on Figure 8 shows the angle between link 2

and link 3 now, singularity occurs on the Z motion, with the

singularities marked as in Figure 8. Figure 7 and Figure 8

are representative of the data obtained in the validation

procedure which analyzed nine possible motions of link 2

leading the singularity. This data showed that singularity

in these directions could be overcome, and a solution to the

problem exists using this approach.

For each run, the error between the theoretical and the

simulated value of Theta was computed. Figure 9 shows the

percent error for the X motion for configuration A (Figure 7

Data). The trend of the error is representative of every
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case investigated. The figure shows that, due to nature of

the numerical integration, the error slightly accumlates

during the simulation, but still has very small value. This

proves that the direct dynamics problem can be solved very

accurately by Newton-Euler approach in a fixed coordinate

system.
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IV. RESULTS AND RECOMMENDATIONS

1. A dynamic model of a three link, rigid revolute joint

manipulator has been developed in this thesis, as a

general computer program package.

2. Several runs for different initial configurations were

simulated and the singularity problem was investigated.

Theoretical and calculated values of angular positions

were compared. It was proved that the singularity

problem could be overcome by using a Newton-Euler

approach in a fixed coordinate system.

3. The following recommendations are provided:

a. Enhance the code and make it more interactive.

That is, let the user specify the constraints he

wants to apply on each link by answering

interactive questions before the actual simulation

run starts. Thus, the motion can be simulated

with different constraints without going into the

code and changing the relevant parameters.

b. Adapt the code for use in a microcomputer. Add a

subroutine in the program to invert the matrix A.

Thus, the code will be more independent from

outside routines and more adaptable to other

computer systems.
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c. Validation of the approach via actual experimental

tests in crucial. This will establish a way of

developing accurate constants for subsequent

controller design and provide a basis for

compensation of gravity effects. Determining

these constants for the code will make the

simulation program more concrete and will provide

more physical insight.

d. Finally, develop a controller for a manipulator

which makes use of the present algorithm for

validation and design.
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APPENDIXA

DERIVATION OF THE TRANSFORMATION MATRIX FROM

EARTH FIXED COORDINATE SYSTEM TO BODY FIXED COORDINATE SYSTEM

The angular velocity terms obtained by integration of

the angular acceleration terms are with respect to an Earth

fixed coordinate system. To define the Euler angles which

are called Yaw Pitch and Roll angles in this thesis, we

have to establish an appropriate body fixed coordinate

system. Thus, U, V and W is a right hand coordinate system

[Ref. 20] with its origin fixed at the center of gravity of

a link. The U, V, W coordinate system is initially oriented

such that the angles between two coordinate system axes are

simultaneously reduced to zero, i.e., i, j, k, axis are

parellel to the I, J, K respectively.

If a rotation from X Y Z coordinate system to the U V W

coordinate system is accomplished by first rotation about K

axis (roll), then about J axis (pitch) and finally about I

axis (yaw), it follows that for any arbitrary point in the X

Y Z coordinate system, the corresponding coordinates in the

U V W system are;
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U X

v -[MatR] Y

W z

where MatR is a 3*3 matrix.

To get the transformation matrix, we need to examine each

rotation separately.

Rotation about the Z axis;

.w-Xc@+Ys.

U C so 0 x
y V=-s# O y

S 0 0 1 Z
/14 r- L L

Rotation about the Y axis;
7. .us Xce - ESS

w V.Y
W Xse+Zce

Ce 0 Se X

Y vV = 0 1 0 Y

x )U
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Rotation about the X axis;

.~ ~W il o -Ys Y + ZC
A 1 0 C0 X

v-0 c q~q Y
V 0 Z S

By multiplying three rotation matrix together;

cec* ces4 -se

MATR S SO C4- C4IS s SeS4+CIC.f .+Cq

c+S9 cf + SS Cyses_ -SYCc cfce

where C = COS

S = Sin

T = Tan

The transformation matrix from body fixed to Euler

coordinate system is obtained as below [Ref. 20].

o [0 -sI,

| T0511 T9C.

L0 -S ec5 a Y ec cf.

The angles discussed above are shown in Figure 10.
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z, roil av;:

XY pdth "iss
e

AZ.

LINK i

x

Figure 10. Critical Angles

(a) Euler Angles, Body Coordinates

(b) Direction Cosines, Global Coordinates
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APPENDIX B

THREE DIMENSIONAL DIRECT DYNAMICS SIMULATION PROGRAM

TERMINAL
METHOD ADAMS
PRINT .O5,DRCANX(1-3),DRCANY(I-3),DRCANZ(1-3),...
Jxo,JYO,JZO,JX1,JY1,JZ1,JX2 JY2 JZ2,...
LCOGX(1-3) ,LCOGY(1-3) ,LCOGZ 1-3S
CONTROL FINTIM =2.0, DELMAX =.I, DELPRT = .05
D DIMENSION MATA(27 27),MASS(3,2) L(3 2),RX(3,2) RY 3,2) ,RZ(3,2))D DIMENSION IXX(3,2 ,I-XZ(3,2),IXY(3,2SIYY(3,2),iYZ (3,2) IZZ(,2)
D DIMENSION MATIR(3,3) MAT2R(3,3) ,MAT3R(3,3)
D DIMENSION MATIT (3,3) ,MAT2T (3,3) MAT3T(3,3)
D INTEGER IER, I,J,M,K,P,N, IA, IDGT,A
EXCLUDE IA,IDGT,IER,I,J,MKP N A
ARRAY MATB(27) LCOGX(3),LCOGY(3$,LCOGZ(3)
ARRAY VECTAO(3S,VECTBO(3) VECTA1(3),VECTB1(3),VECTA2(3),VECTB2(3)
ARRAY WDX(3),WDY(3),WDZ(3 ,W1(3) ,W2(3),W3(3)
ARRAY RATE1(3),RATE2(3),RATE3 (3) ,BRATE1(3),BRATE2(3),BRATE3(3)
ARRAY RBG1(3),RAG1(3),RBG2(3),RAG2(3),RBG3(3)
ARRAY SUMHDX(3),SUMIHDY(3),SUMHDZ(3),HDX(2) HDY(2),HDZ(2),WKAREA(850)
ARRAY IXXT(3),IYYT(3),IZZT(3),IXYT(3),IXZT(3),IYZT(3)
ARRAY YAWANX (3) ,PCANY (3) ROLANZ (3)
ARRAY DRCANX (3) ,DRCANY (3) DRCANZ(3
ARRAY DRCRAX (3) DRCRAY(3) DRCRAZ (3)
ARRAY DRCSX(3),DRCSY(3),DRCSZ(3) -

D DATA MATA/729 -~ O.ODO/

INI TIAL
* INPUT PARAMETER CONSTANTS

A = 5.ODO
P 0 .000
W =2.000 * PI
IDGT =3
G0O.ODO
N=27
M 1
IA =27

* INPUT JOINT LOCATIONS IN METERS

JXO =O.ODO
JYO =0.000
JZO =0.000
JX1 0 .000
JY1 = 0.000
JZ1 =1.000
JX2 = 0.ODO
JY2 =1.000
JZ2 =1.000

* INPUT TORQUE CONSTANTS

TOX =O.ODO
TOY =0.000
TOZ 0 .000
TlY =O.ODO
T1Z 0 .000
T2Y =0.ODO
T2Z = 0.000

* INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS
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* FOR EACH LINK ENDS

L(1:1) 8:O.0D0
L~12 =O50D0

L1,1 O.50D0
L 2,2$ = .50D0
L 3,1) = .50D0
L(3,2) = .50D0

*INPUT MASS AT LINK ENDS IN KILOGRAMS

MASS 1,1) = 2.500
MASS , = 2.5D0
MASS12,11 2.5D0
MASS 2,2 = 2.5D0
M4ASS 3,1 = 2.500
MASS 3,2 = 2.500

* INPUT OMEGA AND OMEGA DOT, YAW, PITCH, AND ROLL ANGLES

DO 30 I 1,3

W2 O.ODO

WDY (I = .000
WDZ (I = .000

PTCANY~j I = .00

ROLANZ I 0.000
30 CONTINUE

YWRX1 YAWANX 1*DEGRA
PTRY1 PTCANY 1*DEGRA
RLRZ1 =ROLANZ 1*DEGRA
YWRX2 =YAWANX DEGRA
PTRY2 =PTCAN'Y 2 *DEGRA
RLRZ2 =ROLANZ 2 *DEGRA
YWRX3 YAWAIX13 * DEGRA
PTRY3 =PTCANY 3 *DEGRA
RLRZ3 ROLANBZ 3 *DEGRA

* INPUT LOCATION OF LINK CENTERS OF GRAVITY

LCOGX(1) = 0.000
Xl = LCOGX(1)
LCOGY(l) 0 .000
Y1 = LCOGY (1)
LCOGZ(1) =0.500
Zi = LCOGZ(1)
LCOGX(2) = 0.000
X2 = LCOGX (2)
LCOGY(2) =0.500
Y2 = LCOGY(2)
LCOGZ(2) = 1.000
Z2 = LCOGZ(2)
LCOGX(3) = 0.000
X3 = LCOGX (3)
LCOGY(3) =1.5DO
Y3 = )LCOGY(3)
LCOGZ(3) = 1.000
Z3 = LCOGZ(3)

* INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS

MASSi = 5.000
MASS2 = 5.000
MASS3 = 5.000
WG1l MASS1*G
WG2 =MASS2*G
WG3 =MASS3*G

* INPUT ACCELERATION OF JOINT ZERO
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AOX = 0.-ODO
AOY = 0.0OD0
AOZ = 0. ODO

* INITIALIZE MATRIX A AND B TO ZEROT ~DO 40 I 1,27
DO 50 J = 1,27

MATA(I,J) = 0.ODO
50 CONTINUE
40 CONTINUE

DO 60 I 1,27
MATB(I) = 0.0D060 CONTINUE

* INITIALIZE THE TRANSFORM1ATION MATRICIES AND VELOCITIES

DO 63 I = 1,3
DO 64 J = 1,3

RATEl (I .ODO
RATE2 (I) = .ODO
RATE3 (I) = .ODO
BRATKl I) = O.ODO
BRATE2 (I = O.ODO
BRATE3 I) = 0.ODO
MATIT (1,3l) = .ODO
MATT (13 .ODO
HAT3T (I,J) O.ODO
MATlR (I ,J) 0.ODO
MAT2R (I,J) 0.ODO
MAT3R (1,3 0. ODO

64 CONTINUE
63 CONTINUE

DERIVATIVE
NOSORT

CALL ERRSET (208,256,-1,1,1)
LEVELQ
CALL UERSE T(LEVELQ ,LEVLDQ)

* INITIALIZE MATRIX A AND B TO ZERO

DO 70 I 1,27
DO 80'J = 1,27

MATA(I,J)'= O.ODO
80 CONTINUE
70 CONTINUE

DO 9O I 1,27
MATB(I) = 0.ODO

90 CONTINUE

* INPUT JOINT EQUATIONS
* JOINT ZERO EQUATIONS
* AB AG1 + (WD1 X RB/G1) + W X (Wl X RB/G1)

VECTAO (1) = WDX (1)
VECTAO (2) = WDY(1
VECTAO (3) = WDZ (1)
RBG1 (1 X8 - LCOGX (1)REGi ()=JYO - LCOGY 1
REG1 (3) JZO - LCOGZ (1)

CALL CPROD(VECTAORBG1 ,IIAO,MJAO,MKAO)
VECTAO (1) = Wi (1)VE CTAO (2) W (2)
VECTAO (3) = Wi (3)

CALL CPROD(VECTAO ,RBG1 ,MIBO,MJBO,MKBO)
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VECTBO (1) = MIBO
VECTBO (2)= MJBO
VECTSO (3) = MXBO

CALL CPROD(VECTAO ,VECTBO ,MICO ,MJCO ,MKCO)

* JOINT ONE EQUATIONS--

* AA =AGi + (WDi X RA/Gi) + WI X (Wi X R.A/Gi)
VECTAl ()=WDX (1)
VECTA,l 2: WDY(1
VECTAl (3)= WDZ (1)

RAGi 1) = M~ LCOGX (1RAG (2) = JYl - LCOGY (1)
RAG (3) = MZ - LCOGZ 1

CALL CPROD(VECTAI,RAG1 ,fIAi ,MJAi ,HKAi)

VECT~l()=W 1VECTAil (2 =W(2)

VECTA (3)= Wi (3)
CALL CPROD (VECTAl ,RAGi AlBi,MJBi ,MKBi)

VECTB1 (1) = MIBi
VECT1 (2) = 11381
VECT91 (3) = MKB.

CALL CPROD (VECTAI.,VECTB1 ,MICi ,IJC1 ,IKCi)

* AB =AG2 + (WD2 X RB/G2) + W2 X (W2 X RB/G2)

VECTAl ()=WDX (2)
VECTAl 2)= DY(2
VECTAl (3)= WDZ (2)
RBG2 (1) = JXi : LC'OGX (2)
RBG2 (2) = M~ LCOG (2)
RBG2 (3) = JZi - LCOGZ (2)

CALL CPROD (VECTAl ,RBG2,MIA2,MJA2,MKA2)

VECTAl ()=W2 (3.VECT~ 2 W2(2
VECTAI (3) W2 (3)

CALL CPROD (VECTAl ,RBG2 ,MIB2 ,MJB2 ,MKE2)

VECTB1 (1 IB2
VECTB1 (2) MJB2
VECTl (3) MKB2

CALL CFROD (VECTA1.,VECTB1 ,MIC2 ,MJC2 ,MKC2)

* JOINT TWO EQUATIONS

* AA=AG2 + (WD2 XRA/G2) +W2 X(W2 XRA/G2)

VECTA2 1 w DX (2
VETA2 (2) WDY(2

VECTA2 (3) WDZ (2)

RAG2 (1) = JX2 - LCSGX(2
RAG2 (2) = JY2 - LCG (2)
RAG2 (3) = 3Z2 - LC0GZ (2)

CALL CPROD (VECTA2 ,RAG2 ,MIA3 ,MJA3 ,1KA3)

VECTA2 (1 2(1)VECTA 2 W2 (2)
VECTA2 (3) W2 (3)

CALL CPROD (VECTA2 ,RAG2 ,MIB3 ,MJB3 ,MKB3)

VECTS2 (1 IB3
VECTB2 (2) MJB3
VECTB2 (3) MKB3

CALL CPROD(VECTA2 ,VECTB2 ,MIC3 ,MJC3 ,MKC3)

* AB AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)
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VECTA2 (2) = WDYVETM = W /3)VECTA2 (3) = WDZ (3)

RBG31) X CG 3
RBG3(2 Y LCOGY (3)
RBG13 = Z2 -LCOGZ (3)

CALL CPROD (VECTA2 ,RBG3 ,MIA4 ,MKA4 ,MKA4)
VECTA2 (1) = W3 (1
VECTA2(2)= W3(2
VECTA2 (3) = W3 (3)

CALL CPROD (VECTA2 ,RBG3 ,MIB4,MJB4 ,MKB4)
VECTIB2 (1) t M4
VECTB2 (2) M4
VECTB2 (3) MKB4

CALL CPROD (VEcTA2 ,VECTB2 ,MIC4 ,MJC4 ,MKC4)

* SUM OF MOMENTS EQUATIONS

DO 100 1 = 1,3
* COMPUTE HX,H- DOT X,HY,H DOT Y, HZ,H DOT Z

RX ,1 = L 1 * CSg (DRCRAX I

RX I, = L 1:2 * DCOSDCA
RY11 = -L I,1 DCOS (DRCRAY I

RY 12 = L 1,2 *DCOS (DRCRAY I
RZ 1,1 = -L 1,1 DC0S (DRCRAZ I
RZI1,21 = LI1,2 * DCOS (DRCRAZ II

IXX(I,1) = MASS (1,1) * (RY (1,1) * RY (,1)) + (RZ I 211 RZ (1,))
IXNX( ,2) = MASSR(,2) * ((Y 1 2) * RY (1,2) + (RZ (I2 fl RZ 1))
IXXT(I) = IXX(I,1) +IXX(I,25
IF (IXXT(I) .LE. .020) THEN
IXXT(I) = .020
ELSE
IXXT(I) =IXXT(I)
END IF
IXY( 1,1) = MASS(1,1) RX (1,1) * RY(1I,1)
IXY(I,2) = MASS (1,2) RX (1,2) * RY (12)
IXYT(I) = IXY(I,l) + IXY (1,2)
IXZ (1,1) MASS(I,1) *ZI )*RX(I,1)
IXZ 12 MAS(2)*Z(12 * RX (12)
IXZT(I) =IXZ(I,1) + IXZ (1,2)

HDX (1) = WDX(1) * IXX (1,1) - WDZ(I) * IXZ (1,1) - WDY(I) *IXY( 11
HDX(2) = WDX(f) * IXX(I,2)- WDZ(I) * IXZ(I,2) - WDY(I) *IXY1:2)

y gSS(1:1) * ((RX(1,1) :~(,) RZ1,) RZ1,)
1S1(2,2) * (RX 1I 2) RX (1,2) + R(2)* RZ (12))

IYYT(I) =IYY(I,1) + IYY(I,2
IF(4IYYT(I) .LE. .020) THEN
IYYT (I) =.020
ELSE
IYYT(I) = IYYT(I)
END IF
IYZ ,(1,1) = MASS 1,1) RY(1)*RZI)
IYZ( (12) = MASS (1,2)*R(12 * RZ (, 2)
IYZT(I) = IYZ(1I,1) + IYZ (1,2)

HDY(1 = WDY(1 * IYY ( 1) WDX(I * IXY,1) -WDZ(I) * IYZ(I 1)
HDY (2) = WDY I) * IYY(,2) WDX I) * IXY (I2 fl WDZ(I) * IYZ (12)

IZZ (11) MASS (1,1) *(RX(I,1) * RX (1,1) + (RY(I,1) * RYI1
IZZ (1,2 = MASS (12)2 * ((X 1 2X(,) + (RY12 * RY(1,2)))
IZZT(I) = IZZ(I,1) +I I(I 2 S
IF (IZZT(I) .LE. .020) THEN
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IZZT(I) = .020
ELSE
ENDjI = IZZT(I)

HDZW = WDZ(I)' * IZZ (14) - WDX I *1y21 ,1) -WDY(I) * IYZ(I,1)
HDZ2)= WDZ(I) * IZZ 1,2) - WDX(I) * IXZ(1,2) WDY(I) * IYZ(I,2)

SUHHDX(I) HDX(1) + HDX(2)
SUMHDY(I HY(1) + HDY(2
SUMHDZ(I) HDZ(1) + HDZ(2)

100 CONTINUE
* ENTER CONSTANTS INTO MATRIX A
* LINK ONE
* SUM OF FORCES IN THE X DIRECTION

MATA (1,1) 1.000
MATA (1,4) MASSI
HATA(1 10)L -1.00
MATB (11 0.000

* SUM OF FORCES IN Y DIRECTION

MATA (2) = 1.000
MATA (2,) =MASS1
MATA (2,11) -1.ODO
IMTB(2) = .000

* SUM OF FORCES IN Z DIRECTION

MATA(33 .0
MATA (3,6) : MASS1
MATA (3,12) = -1.ODO

* SUM OF FORCES LINK ONE EQUAL

KATB(3) = -WG1
* EQUATIONS AT JOINT ZERO
* IN THE X DIRECTION

MATA(44 = 1.0
MATA (,)=RBG1 (3)MATA (4,9) = -RBG1 (2)
MATB(4) =AOX - MICO

* IN THE Y DIRECTION
MATAR(,5) 1.000
MATA (57 RBG1 (3)MATA (5,9) RBG1 (1)
MATB(5) =AOY - MJCO

* IN THE Z DIRECTION
MATA (6,6 1.ODO
MATA (,)=RBGI (2)
MATA (6,8) -RBG1 (1)
MATB(6) AOZ - MKCO

* SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS

ATA 7,2 = RB 3
MATA ,3 RG1 2
MAT 7,'7) = IXT1
MATA 7,8) = IXYT 1
MATA 7 ,9) = IXZT 1
MATA 711) = -RAGI 3
MATA7 7,12) = RAG1121
MATB (7) = TiX - TOX
MATA(8,1) = -RBG1(3)
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MATA 8,) = I
MATA18,8) I IY
MATA 8, 9) IZT 1
MATA 8,10) = RAGi 3
MATA 8,12) = -RAG1 1
MATB(8) = T1Y -TOY

MATA(N,) 412RB (f)
MATAJ9,7) = IXZT +I T() IZT3
MATA 9 8) IYZT1 + IYZT2 + ZT(3)
MATA 9,9) = IZZI 1 - IZZT (2) IZZT (3)
MATA 9,10) = RAGi 2
MATA 9,11) RAGi 1
MATB(9) = T1Z - TOZ

* LINK TWO
* SUM OF FORCES IN X DIRECTION

MATA (01)= 1.ODO
MATA (1,1) MASS2
MATA (10,19) -1.ODO

MATB(10) = O.ODO
* SUM OF FORCES IN THE Y DIRECTION

MATA (11)= 1.ODO
MAT 11:11 = MASS2

MATA 1,20 = -1.ODQ

MATB(11) = O.ODO
* SUM OF FORCES IN THE Z DIRECTION

MATA (1,2 .ODO
MATA (12,15)= MASS2
MATA (12,21) = -1.ODO

* SUM OF FORCES LINK TWO EQUAL

MATB(12) = -WG2
* EQUATIONS AT JOINT ONE
* IN THE X DIRECTION

M4ATAff13,4) -1.ODO
MATA 1,) = -RAGi (3)
MATA 13,9) = RAGi (2)

MAA13,13) = 1.ODO
MATA 13,17) = _RBG2 (3)MATA113,18) = -RBG2 (2)
MATB(13) = MICi - MIC2

* IN THE Y DIRECTION

MATA 14,5) 1. ODO
MATA 147) RAG1 (3)
MATA114,9) =-RAG1 (1)
MATA 14,14) 1.ODO
MATA 14,16) -RBG2 (3)MATA 14,18)18 RBG2 (1)
MATB(14) =MJC1 - MJC2

* IN THE Z DIRECTION

MAh 15,6) = -1.OD'
MATA 157) = -RAGi (2)
MAh A15,8) = RAG.(1)
MATA 15,15) = 1. ODO
MATA 15,16 = _RBG2 (2)MATA 15,17 = -R8G2 (1)
MATB(15) = MKC1 - MKC2

* SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE XYZ DIRECTIONS
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ATA (1,1 = RBG2 3
MATA(1!6!!' -RBG2 2
MATA (16,16 = -IXXT 2
MATA (16,17 = IXYT 2
MATA (16,18 = IXZT 2
MATA 16,20 = -RAG2 3
HATA116,21 = RAG2121
MATB(16) = (-TiX + T2X) *DCOS(RLRZ1)
MATA 171)=-RBG2 3)
MATA 17,12) RBG2 1)
MATA 17,16)1 IXYT 2)
MATA 17,17) -IYYT 2)
MATA 17,18) IYZT 2)
MATA 17,19~ RAG2 3
MATA117,21 -RAG2 11
Z{ATB(17) (- T1Y + T2Y) *DSIN(RLRZ1)
MATA(18,9)) = -1.ODO
MATA18 18)= 1.ODO
MAT( 181 O.ODO

* HATA(8,0 = RBG2 2
* MHATA (81)=-RBG2 1
*MATA (18,16) = IXZT 2 + IXZT (3)
*MATA (18,17) = IYZT 2 + IYZT(3
*MATA (18,18) = -IZZT 2 - IZZT (3)
*MATA 18,193 = -RAG2 2
*MATA 18,20 = RAG2 11
* MATB(18) = -T1Z + T2Z

* LINK THREE
* SUM OF FORCES IN THE X DIRECTION

MATA (19,19) 1.ODO
MATA (19,22)= MASS3
MATB(19) =0.ODO

* SUM OF FORCES IN THE Y DIRECTION
MATA (20,20) = 1.ODO
MATA (20,23) =MASS3
MATB(20) = 0.ODO

* SUM OF FORCES IN THE Z DIRECTION
MATA (21 ,21) = 1.ODO
MATA (21,24)= MASS3
MATB(21) = -WG3

* EQUATIONS AT JOINT TWO
* IN THE X DIRECTION

MTA 221 : 1.ODO
MATA 221 RAG2(3)
MATA 22,181 = RAG2 (2)
MATA 22,22 = 1.ODO
MATA 22,26 = _RBG3 (3)MATA 22,27 =-RBG3 (2)
MATB(22) MIC3 - MIC4

* IN THE Y DIRECTION
MATA(2,4 -1.ODO
MATA (31)= RAG2 (3)
MATA (23 ,18) -RAG2 (1)
HATA (23,23) = 1.000
HATA (23,25) = -RBG3 (3)
MATA (23,27) = RBG3 (1)
MATB(23) = MJC3 - MJC4
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* IN THE Z DIRECTION

MATA 24,15 = -1.ODO
MATA 24,16 = -RAG2 (2)
MATA 24,17 = RAG2 (1)
MATA 24,24 = 1.ODO
MATA 24,25 = RBG3 (2)
MATA 24,26 = -RBG3 (1)
MATB(24) = MKC3 - MKC4

• SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS

MATA (25,21 -RBG3 (2
MATA (25,25 -IXXT(3
MATA (25,26 = IXYT (3
MATA (25,27 = IXZT(3
MATB(25) = -T2X * DCOS(RLRZI)

MATA(26,21) RBG3(

MATA (26,25 IXYT (3
MTA(26,26 -IYYT(3
MATA (26,27) IYZT (3
MATB(26) = -T2Y * DSIN(RLRZ1)
MATA(27;,9) -1.ODO
MATA(27 ) = I.ODO
MATB (27 = O.ODO

R MAAf(2718) _R (2)
* MATA (2720 =-RBG3 1
* MATA (27,25) IXZT(
* MATA (27,26 IYZT
* MATA(27,27 = -IZZT 3

• MATB(27) - T2Z

GO TO 1112
• INITIALIZE MATRIX ACCORDING TO CONSTRAINTS
* CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION
SDO 118 1 1,18
SDO 18 J 1,27

• MATA(I,J) = 0.0
* MATAII) = 1.0
• MATB (I) = 0.0
*18 CONTINUE
*118 CONTINUE

• DO 181 I = 19,27
SDO 81 J = 1,18

* MATA(I,J) = 0.0
*81 CONTINUE
*181 CONTINUE
S GO TO 1111

* CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
SDO 19 1 = 1,9
• DO 191 J = 1,27
* MATA(I,J) = O.ODO
* MATAII) = 1.0 DO
* MATB( I = O.ODO

* mATA (17,3) 0.00
* MATA(18,J) = 0.00
* MATB(175 = 0.00
* MATB (18) = O.DO

* MATA(J,17) = 0.00
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* - MATA(J,18) = 0.00

* mATA(17,17) = 1.ODO
* MATA(18,18) = 1.ODO
*191 CONTINUE
*19 CONTINUE

* DO 91 I = 10,27
* DO92 J= 1,9
* MATA(I,J) = 0.0
*92 CONTINUE
*91 CONTINUE
** GO TO 1111
* CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE IN MOTION
* DO 78 J = 1,27
* MATA7 J) = 0.00
* KATA 8, J) = 0.ODO
* MATAJ, 7) = 0.00
* MATA J 8) = O.ODO
* MATB 7 = 0.00
* MATB 8) = 0.ODO
* HATA(17,J) 0.00
* MATA(18,) =0.00
* MATA(J,17) 0.00
* MATA J 18) =0.00
* MATB (17) 0.00
* MAIB (18) =0.00
* MATA 26,J) 0.ODO
* MATA 27,J) - 0.00
* MATA 3,26) 0.00
* MATA J,27) 0.00

* MATB 26) =0.00
* MATB 27) 0.00
* HATA(,7) = 1.00
* MATA 8,8) 1.00
* ATA17,17) = 1.OD0
* MATA 18 18) = 1.00
* MATA 26,26) = 1.00
* MATA 27 ,27) = 1.00
*78 CONTINUE

* CONSTRAINT GROUP 4 THE FIRST LINK IS CONSTRAINED TO ROTATE IN Z DIR.

1112 DO 48 I = 4,8
DO 481 J = 1,27

MATA (I,J) = 0.000
MATA(I I) = 1.0 DO
MATB (I = 0.00

481 CONTINUE
48 CONTINUE

DO 84 I = 9,27
DO 841 J = 4,8

MATA(I,J) = 0.0
841 CONTINUE
84 CONTINUE

* CALL EQUATION SOLVER PROGRAM FROM IMSL

1111 CALL LEQT2F(MATA,M,N,IA,MATB,IDGT,WKAREA,IER)
* IF (IER .NE. 0) CALL ENDJOB

* FIND LCOGX,LCOGY,LCOGZ,THETA VALUES,WX,WY,WZ
* LINK ONE

AXI = MATB(4)
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VELX1 = IN'TGRL (O.,AX1)
LCOGX1 = INTGRL (X1,VELX1)
LCOGX(l) = LCOGX1
AY1 = MATE(S)
VELY1 = INTGRL ( .,AYl)
LCOGY1 = INTGRL (Y1,VELYI)
LCOGY(1) = LCOGY1
AZi = MATB(6)
VELZ1 =INTGRL (O.,AZ1)
LCOGZ1 = INTGRL (Zl,VELZ1)
LCOGZ(1) =LCOGZ1
WD1X =MATB(7)
WiX = INTGRL(O.,WDlX)
WDX(l) =WDlX
W1(1) = WiX
WDIY =MATE(S)
WlY = INTGRL(0.,WDl1Y)
WDYf 1) = WDlY

WI( = WlY

WDlZ =MATB(9)
wiZ= INTGRL(O.,WDlZ)
WDZ(1) =wD1z
W1(3) = W1Z

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR LINK ONE

MATlR(l,1) = DCOS(RLRZ1) * DCOS(PTRY1)
MATlR(2,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1)
DSIN(RLRZ1) * DCOS(YWRX1)
MATlR(3,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) +

DSIN(RLRZI) * DSIN(YWRX1)
MATlR(1,2) =DSIN(RLRZI)*DCOS(PTRYI)
MATIR(2,2) = DSIN(RLRZ1) * DSIN(PTRYl) * DSIN(YWRXi) +.
DCOS(RLRZ1) * DCOS(YWRXI)
MATIR(3,2) = DSIN(RLRZ1) * DSIN(PTRYI) * DCOS(YWRX1)
DCOS(RLRZ1) * DSIN(YWRX1)
MAT1R(1,3) = -DSIN(PTRYl)
MATlR(2,3) = DCOS(PTRYI) * DSIN(YWRX1)
MATlR(3,3) = DCOS(PTRY1) * DCOS(YWRXI)

* GET THE VELOCITIES OF LINK ONE IN BODY FIXED COORDINATE SYSTEM
DO 605 J = 1,3

SUM1 = O.ODO
DO 606 K = 1,3

SUMI = SUMI + MATlR(J,K) * W1(K)
606 CONTINUE

BRATE1(J) =SUM1
605 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO NON-OPTHOGONAL EULER
* COORDINATE SYSTEM FOR LINK ONE

MATT1,1) = 0.ODO
MATlT (2,1) = 1.ODO
WAIT (3,1) = 0.ODO
MATMT2 = OCOSR(WRX1
MATlT (22)= DIAN (PTRY1) * DS IN(YWRXI)
MATlT (3,2)= 1.ODO/DCOS(PTRYl) *DSIN (YWRX1)
IIATlT (1,3) = -DSIN (YWRX1)
MATIT (2,3)= DTAN PTRY1) * DCOS(YWRX1)
MATlT (3,3) = IDO/DCOS(PTRY1) * DCOS(YWRX1)

* GET THE VELOCITIES OF LINK ONE IN THE EULER COORDI4NATE SYSTEM
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Do 705 J = 1,3
StJH1 = 0.ODO

DO 706 K = 1,3
SUM1 SUM1 + MAT1T(J,K) *BRATE1(K)

706 CONTINUE
RATE1(J) =SUM1

705 CONTINUE

RATElX = RATl(1
RATElY = RAT[l (2)
RATE1Z = RATE (3)

* INTEGRATION OF THE VELOCITIES OF LINK ONE IN EULER COOR. SYSTEM

YWRX1 =INTGRL (0.,RAT1X)Y
PTRY1 =INTGRL O.,RATEY
RLRZ1 =INTGRL (-PI/2.,RATE1z)

* CONVERT THE ANGLES TO DEGREES

YAWANX (1) = YWRXI RADEG
PTCANY (1 = PTRY1 RADEG
ROLANZ (1 - RLRZ1 *RADEG

* GET THE DIRECTION COSINES FOR THE LINK ONE

DRCSY(l) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRXI) ..
DSIN(RLRZI) * DSIN(YWRXI)
DRCSX(l) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1)
DCOS(RLRZI) * DSIN(YWRX1)
DRCSZ(l) DCOS(PTRY1) * DCOS(YWRX1)
DRCRAX ()=DCS(RS()
DRCRY1 = ACOS (DRCSY(1)
DRCRAZ (1) DACOS (DRCSZ(1I
DRCAN () DACOS (DRCSX (1) RADEG
DRCN(1= DACOS (DRCSY(1) RADEG
DRCANZ (1I DACOS (DRCSZ(1)) RADEG

* LINK TWO

9 AX2 =MATB(13)
VELX2 = INTGRL (O.,AX2)
LCOGX2 = INTGRL (X2,VELX2)
LCOGX(2) = LCOGX2
AY2 = MATB(14)
VELY2 = INTGRL(O.,AY2)
LCOGY2 =INTGRL(Y2,VELY2)
LCOGY(2) = LCOGY2
AZ2 = MATB(15)
VELZ2 = INTGRL (0.,AZ2)
LCOGZZ = INTGRL (Z2,VELZ2)
LCOGZ(2) - LCOaZ2
WD2X = ?tATB(16)
W2X = INTGRL( 0.,WD2X)
WDX(2) - WD2X
W2(1) a W2X
WD2Y =KATB(17).
W2Y = INTGRL( .WD2Y)

WDYJ2) WD2Y
W2( W2Y

WD2Z MATB(18)
W2Z =INTGRL(O.,WD2Z)
WDZ 2) =WD2Z
W2( 3) =W2Z

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR LINK TWO

MAT2R(l,l) =DCOS(RLRZ2) * DCOS(PTRY2)
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MAT2R(2 2,)=Dcos(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2)
DSIN(RLRZ )DCOS (YWRX2)
MAT2R(3,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +.
DSIN(RLRZ2) * DSIN(YWRX2)
MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)
MAT2R( 2,2) =DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +.

DCOS (RLRZ2) * DCOS (YWRX2)
MAT2R(3,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2)
DCOS(RLRZ2) * DSIN(YWRX2)
MAT2R(1,3) = -DSIN(PTRY2)
MAT2R(2,3) = DCOS(PTRY2) * DSIN(YWRX2)
MAT2R(3,3) = DCOS(PTRY2) * DCOS(YWRX2)

* GET THE VELOCITIES OF LINK TWO IN BODY FIXED COORDINATE SYSTEM
DO 607 J = 1,3

SUMi = O.ODO
DO 608 K = 1,3

SUMI = SUMI + MAT2R(J,K) * W2(K)
608 CONTINUE

BRATE2(J) =SUMi
607 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
* COORDINATE SYSTEM FOR LINK TWO

MAT2Tl (1) 0 O.ODO
MAT2T (21)= 1 .ODO
MAT2T (3,1) 0 .ODO
MAT2Tl (1 2) DCOS (YWRX2)
MAT2T (22)= DTAN (PTRY2) * DSIN(YWRX2)
MAT2T (3, 2) 1.ODO/DCOS(PTRY2) * DSIN (YWRX2)

ATT~ j (13: -DSIN (YWRX2)
MAT2T(3 DTAN (PTRY2) * DCOS(YWRX2)
MAr2T (3 3) 1.0DO/DCOS(PTRY2) * DCOS(YWRX2)

* GET THE VELOCITIES OF LINK TWO IN THE EULER COORDINATE SYSTEM

DO 707 J = 1,3
SUMI = O.ODO

DO 708 K = 1,3
SUM1 SUMi + MAT2T(J,K) * BRATE2(K)

708 CONTINUE
RATE2(J) =SUM1j707 CONTINUE

RATE2X = RATE2 (1)
RATE2Y = RATE2 (2)
RATE2Z = RATE2 (3)

* INTEGRATION OF THE VELOCITIES OF LINK TWO IN EULER COOR. SYSTEM

YWRX2 = INTGRL (O.,RATE2X)
PTRY2 = INTGRL(O.,RATE2Y)
RLRZ2 = INTGRL( -PI/2.,RATE2Z)

* CONVERT THE ANGLES TO DEGREES

YAWANX (2)YWRX2 *RADEG

PTCAN (2)PTRY2 *RADEG
ROLANZ (2)RLRZ2 *RADEG

* GET THE DIRECTION COSINES FOR THE LINK TWO

DRCSY(2) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2)
OSIN(RLRZ2) * DCOS(YWRX2)
DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2)*DSIN(YWRX2) +.
DCOS(RLRZ2) * DCOS(VWRX2)
DRCSZ(2) DCOS(PTRY2) * DSIN(YWRX2)
DRCRAX(2) DACOS(DRC'ZX(&'))
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DRCRAY (2 = DACOSR(RCSY (2)DRCR&Z (2) = DACOS (DRCSZ (2)
DRCAX2 UACOS (DRCSX (2)) RADEG
DRCN (2) = DACOS (DRCSY (2)* RADEG
DRCANZ (2) = DACOS (DRCSZ (2)* RADEG
JX1 = L$1,1) + L 1,2 * DCOS DRCRAX~j 1

J1= L (11+L1,2) * DCOS DRCRAY ()
Jzi. = LOi 1,* , DCOS DRCRAZ 1

* LINK THREE

6 AX3 =MATB(22)
VELX3 = INTGRL 0O.AX3)
LCOGX3 = INTGRL (X3,VELX3)
LCOGX(3) = LCOGX3
AY3 = MATB(23)
VELY3 = INTGRL (O.,AY3)
LCOGY3 = INTGRL (Y3,VELY3)
LCOGY(3) = LCOGY3
AZ3 = MATB(24)
VELZ3 = INTGRL 0O.AZ3)
LCOGZ3 = INTGRL Zi3,VELZ3)
LCOGZ(3) = LCOGZ3
WD3X = MATB(25)
W3X = INTGRL(O ., WD3X)
WDX(3) = WD3X
W3(1) = W3X
WD3Y =MATB(26)
W3Y = INTGRL(O.,WD3Y)
WDY 3) = WD3Y

W3( = W3Y

WD3Z = MATB(27)
W3Z = INTGRL( 0 .WD3Z)
WDZ(3) = WD3Z
W3(3) = W3Z

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR LINK THREE

MAT3R(1,1) = DCOS(RLRZ3) * DCOS(PTRY3)
MAT3R(2,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3)
DSIN(RLRZ3) * DCOS(YWRX3)
MAT3R(3,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) +.

DSIN(RLRZ3) * DSIN(YWRX3)
MAT3R(1,2) = DSIN(RLRZ3) * DCOS(PTRY3)

MAT3R(2,21)=DSN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) ..

MAT3R(3,2)=*DSIN(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3)
DCOS(RLRZ)* DSIN(YWRX3)
MAT3R(1,3) = -DSIN(PTRY3)
MAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
MAT3R(3,3) = DCOS(PTRY3) *DCOS(YWRX3)

* GET THE VELOCITIES OF LINK THREE IN BODY FIXED COORDINATE SYSTEM
DO 609 J = 1,3

SUM1 = O.ODO
DO 610 K = 1,3

SUM = SUM1 + MAT3R(J,K) * W3(K)
610 CONTINUE

BRATE3(J) =SUM1
609 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
* COORDINATE SYSTEM FOR LINK THREE
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MAT3T (1,1) = O.ODO
MAT3T (2,1) = 1.ODO
MAT3T (3,1) = .ODO
MAT3T (2)=DCOS (YWRX3)MAT3T (2)=DIAN (PTRY3) DS IN( YWRX3)
MAT3T (3,2) = .ODO/DCOS( PTRY3 ) DSIN(YWRX3)
MAT3flT3 = -DSIN YWRX3MAT3T (3)=DTAN (PTRY3 * DCOS (YWRX3)
HAT3T (3,3) 1.ODO/DCOS (PTRY3) DCOS (YWRX3)

* GET THE VELOCITIES OF LINK THREE IN THE EULER COORDINATE SYSTEM

DO 709 J = 1,3
SU141 = 0.-ODO

Do 710 K = 1,3
StJM1 SUMI + MAT3T(J,K) * BRATE3(K)

710 CONTINUE
RATE3(J) =SUM1

709 CONTINUE
RATE3X = RATE3 (1)
RATE3Y = RATE3(2
RATE3Z = RATE3 (3)

* INTEGRATION OF THE VELOCITIES OF LINK THREE IN EULER COOR. SYSTEM

YWRX3 = INTGRL(0.,RATE3X)
PTRY3 = INTGRL (0.,RATE3Y)
RLRZ3 = INTGRL (-PI/2.,RATE3Z)

* CONVERT THE ANGLES TO DEGREES

YAWANX (3) YWRX3 *RADEG

TCANY ( 3) PTRY3 *RADEG
ROLANZ (3) RLRZ3 *RADEG

* GET THE DIRECTION COSINES FOR THE LINK THREE

DRCSY(3) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3)
DSIN(gLRZ3) * DCOS(YWRX3)
DRCSX(3) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) +.
DCOS(RLRZ3) * DCOS(YWRX3)
DRCSZ(3) =DCOS(PTRY3) * DSIN(YWRX3)

DRCRAX (3 DACOS (DCSX ()
DRCRAY (3) DACOS (DRCSY (3)
DRCRAZ (3) DACOS (DRCSZ 3)
DP.CANX (3 DACOS (RCSX (3) * RADEG
DRCANY (3) DACOS (DRCSY (3) * RADEG
DRCANZ (3) DACOS (DRCSZ (3) * RADEG
JX2 = JX1 + (L(2,1) + L(2 ,2)) DCOS (DRCRAX()
JY2 = JYl (L(2,1 + L(2 2) * DCOS (DRCRAY2))
JZ2 = JZ1 + L,2,1 + L(2 ,2) * DCOS (DCRAZ(2)
TIPX = JX2 + (L (3,1) + L(3 3,2)) DCOS (DRCRAX (3))
TIPY = JY2 + (L (3,1 + L( 3,2) * DCOS (DRCRAY ()
TIPZ = JZ2 + (L (3,1) + L( 3,2) * DCOS (DRCRAZ(3)

DYNAMI C
NOSORT

* INPUT TORQUE AT JOINTS

TOZ = A *SIN (W *TIME + P)
TIX =-10 SIN (W *TIME + P)
T2X =A *SIN (W *TIME + F)

END
STOP
FORTRAN
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5UBROUTINE TO COMiPUTE THiE CRS PRDC FTW LCVR

SUBROUTINE CPROD(VECTA,VECTB,MI ,MJ,HIK)
IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3) ,VECTB(3)
MI =VECTA (2) VECTB(3) VE T 3 ET 2
MJ =VECTA (3) VECT ()-VCTA (I VECT (3)MK =VECTA (1I VECTB (2) VE CTA (2) VECTB (1)

RET URN
END
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APPENDIX C

THREE DIMENSIONAL SIMULATION PROGRAM
INVESTIGATION OF SINGULAR CONFIGURATION

TERMINAL
METHOD ADAMS
PRINT .05 ,ERROR,ANG12Z,ANG23Z
CONTROL FINTIM = 4.0, DELMAX =.l, DELPRT = .05
SAVE .05, ERROR,ANG12X ,ANG12Y ANG12Z,THETAB,THETAD,ANG23X,ANG23Y,..
ANG23Z,IYYT(2) ,IXXT(2) ,IZZT(2j
GRAPH DE=TEK618) TIME,ANG12XGPH DEEK61 TMEANG12Y
GRAPH,81E1TEK618' TIMENG12Z
GRAPH DTEK61 TIEAG23X
GRAPHIDE=TEK618 TIMEANG23Y
GRAPH DE=TEK618 TME,ANG23Z
GRAPH DE=TEK618 TIME ,THETAB
GRAPH DE=TEK618 TIMEIYYT(2),IXXT(2) ,IZZT'2)
D DIMENSION MATA(27 27),MASS(3,2) L(3 2) )RX(3 2),R f3 2) ,RZ(3,2)
D DIMENSION IXX(3,2 ,IXZ(3,2),IXY(3,2 I~ ,IY3,2) ,IZ (3,2) IZZ(3,2)
D DIMENSION MATlR (3,3) ,MAT2R3 (, 3) , MAT3R( 3,3)
D DIMENSION MATlT (3,3) MAT2T (3,3) ,MAT3T (3,3)
D INTEGER IER,I ,J,M,K,P,N,IA,IDGT,A
EXCLUDE IA,IDGT,IER,I,J,M,KPN A
ARRAY MATB(27) LCOGX(3) ,LCOGY(35 ,LCOGZ(3)
ARRAY VECTA (3S,VECTBO(3) VECTA1(3),VECTB1(3),VECTA2(3),VECTB2(3)
ARRAY WDX(3),WDY(3),WDZ(35,W1 (3) ,W2(3),W3(3) ,MATC (27),DQ(27)
ARRAY RATE1(3),RATE2(3),RATE3 (3) BRATE1(3) BRATE2 (3) ,BRATE3(3)
ARRAY RBG1(3),RAG1(3),RBG2(3),RAG2(3),RBG3 (3)
ARRAY SUHHDX(3),SUMHDY(3),SUIMHDZ(3),HDX(2),HDY(2),HDZ(2),WKAREA(850)
ARRAY IXXT(3),IYYT(3), IZZT(3),XXYT (3),IXZT(3),IYZT(3)
ARRAY YAWANX (3,PCAY() ROLANZ(3)
ARRAY DRCANX (3) ,DR (3) DRCANZ (3)
ARRAY DRCRA (3) DRCRAY(3),,DRCRAZ (3)
ARRAY DRCSX3) ,DRCSY(3),DCSZ
D DATA MATA/729 *OODO/~

INITIAL
* INPUT PARAMETER CONSTANTS

A = 3.ODO
P = O.ODO
W = PI / 2.ODO
IDGT = 3
G0O.ODO
N= 27
M 1.
IA =27

* INPUT JOINT LOCATIONS IN METERS

JXO = O.ODO
JYO = O.ODO
JZO = O.ODO
JX1 = O.ODO
JY1 = O.ODO
JZ1 = 1.ODO

* USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE A

JX2 = O.ODO
JY2 = 1.ODO
JZ2 = 1.ODO

* USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE B
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* JX2 = 1.ODO
* JY2 = 0.ODO
* JZ2 = 1.ODO
* USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE C

* JX2 = O.ODO
* JY2 = O.ODO
* JZ2 = 2.ODO

* INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS FOR
* EACH LINK ENDS

L 1,1) = O.5ODO
L(1,2 = 0.50D0
L 2,11 = O.50DO
L 2,2 = 0.50DO
L 3,1 = 0.50DO
L13,2 = 0.50D0

* INPUT MASS AT LINK ENDS IN KILOGRAMS

MASS(l,1 = 2.5DO
MASS 1, = 2.5DO
MASS12,1 = 2.5DO
MASS 2 2 = 2.5DO
MASS 3,1 = 2.5DO
MASS 3,2 = 2.5DO

* INPUT OMEGA AND OMEGA DOT

DO 30 I = 1,3
Wi) = O.ODO
W2I = O.ODO
W3I = O.ODO
WDX(I) = O.ODO
WDY(I) = O.ODO
WDZ(I) = O.ODO

30 CONTINUE
* INPUT LOCATION OF LINK CENTERS OF GRAVITY
* LINK ONE

LCOGX(1) = O.ODO
Xl = LCOGX(1)
LCOGY(1) = 0.ODO
Y1 = LCOGY(1)
LCOGZ(1) = 0.5D0
Zi = LCOGZ(1)

* NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE A

LCOGX(2) = O.ODO
X2 = LCOGX(2)LCOGY(2) = 0.5D0
Y2 = LCOGY(2)
LCOGZ(2) = 1.ODO
Z2 = LCOGZ(2)
LCOGX(3) = O.ODO
X3 = LCOGX(3)
LCOGY(3) = 1.5DO
Y3 = LCOGY(3)
LCOGZ(3) = 1.ODO
Z3 = LCOGZ(3)

* NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE B
* LCOGX(2) = 0.5D0
* X2 = LCOGX(2)
* LCOGY(2) = O.ODO
* Y2 = LCOGY(2)
* LCOGZ(2) = 1. DO
* Z2 = LCOGZ(2)
* LCOGX(3) = 1.SDO
* X3 = LCOGX(3)
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* LCOGY(3) =O.ODO
*Y3 = LCOGY(3)

LCOGZ(3) = 1.ODO
*Z3 = LCOGZ(3)

*NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE C

* LCOGX(2) = O.ODO
*X2 = LCOGX(2)
* LCOGY(2) = O.ODO
* Y2 = LCOGY (2)
* LCOGZ(2) = 1. 5DO
*Z2 = LCOGZ(2)
* LCOGX(3) = 0.ODO
*X3 = LCOGX(3)
* LCOGY(3) =O.ODO
* Y3 = LCOGY (3)
* LCOGZ(3) = 2. DO
*Z3 =LCOGZ(3)

* INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS I N NEWTONS

MASS1 5.ODO
MASS2 = S.ODO
MASS3 = S.ODO

WG1 = MASS1*G
WG2 = MASS2*G
WG3 = MASS3*G

* INPUT ACCELERATION OF JOINT ZERO

AOX =O.ODO
AOY = O.ODO
AOZ =O.ODO

* INITIALIZE MATRIX A AND B TO ZERO

DO 40 1 = 1,27
DO 50 J = 1,27

MATA(I,J) = O.ODO
DQ(I) = O.ODO
MATC(I) = O.ODO

50 CONTINUE
40 CONTINUE

DO 60 I = 1,27
MATB(I) = 0.ODO

60 CONTINUE
* INITIALIZE THE INITIAL VELOCITIES AND TRANSFORM4ATION MATRICIES

Do 63 1 = 1,3
DO 64 J 1,3

RATEl I) OODO
RATE2 (I) = ODO
RATE3 I) = O.ODO
BRATMl I) = O.ODO
BRATE2 (I = O.ODO
BRATE3 (I = O.ODO
MAT1T (1,3) 8.ODO

- MAT2T (13 = ODO
?IAT3T (,)=O.ODO
MATi R (IJ) = .ODO
MAT2R (I,J) O.ODO
MAT3R II,J) O.ODO

64 CONTINUE
63 CONTINUE

DERIVATIVE
NOSORT

CALL ERRSET (208,256,-1,1,1)
LEVELQ = 0
CALL UE RSET (LEVELQ ,LE VLDQ)
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* INITIALIZE MATRIX A AND B TO ZERO

DO 70 I 1,27
DO 80 J = 1,27

HATA(I,J) = O.ODO
80 CONTINUE
70 CONTINUE

DO 90 I 1,27
MATB(I) = O.ODO
DQ (I) = O.ODO

90 CONTINUE

* INPUT JOINT EQUATIONS
* JOINT ZERO EQUATIONS
* AB =AG1 + (WDI X RB/Gi) + Wi X (Wi X RB/Gi)

VECTAO(1=WD()
VECTAO (2) WDBY (1)
VECTAO (3) WDZ (1
RBG1(1) = JXO - LCOGX(
RBG1(2) = JYO - LCOGY(HRBG1(3) = JZO - LCOGZ(1)

CALL CPROD(VECTAO ,RBG1 ,MIAO ,MJAO ,MKAO)
VECTAOR(1 = Wi (1
VECTAO (2) = Wi 2
VECTAO (3) = Wi (3)

CALL CPROD(VECTAO ,RBG1 ,MIBO ,MJBO IMKBO)
VECTBO (1 =MBO
VECTBO ()=MJBO
VECTBO (3) MKBO

CALL CPROD(VECTAO ,VECTBO ,MICO ,MJCO ,MKCO)
* JOINT ONE EQUATIONS-- -
* AA =AGi + (WDi X RA/Gi) + Wi X (Wi X RA/Gi)

VECTAl(1=WD()
VECTAl 2 WDY (1)
VECTAl (3) = DZ (1)
RAGi 1) = JX1 LCOGX(1
RAGi()= 1 LCOGY( I
RAG1 3) JZ1- LCOGZ( 1)

CALL CPROD(VECTA1 ,RAG1.,MIAi ,MJAi ,MKA1)
VECTAI (1) = WI (1)
VECTAl (2) = Wi 2
VECTAl (3) = Wi (3)

CALL CPROD (VECTAl ,RAGi ,MIB1 ,MJBI ,MKBi)
VECTBl (1 = MIBi
VECTB1 (2) = MJB1
VECTB1 (3) = MKBI

CALL CPROD (VECTAl ,VECTB1 ,MICi ,MJCi ,MKC1)
* AB AG2 + (WD2 XRB/G2) + W2 X(W2 XRB/G2)

VECTAl 1)=WDX(2)
VECTAl 2)= DY(2
VECTA. (3) WDZ (2)
RBG2(1 = JX1 - LCOGX(2
RBG2 (2) = JYl - LCOGY(2
RBG2 (3) = JZ1 - LCOGZ 2)

CALL CPROD (VEcTA , RBG2 ,MIA2 ,MJA2 ,1IKA2)
VECTAl (1 = W2 ( i
VECTAl (2) = W2 (2)
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VECTA1(3) = W2(3)
CALL CPROD (VECTAl ,RBG2,MIB2,MJB2,MKB2)

VECTB 1) M3 MB2
VECTBl (2) = MJB2
VECTB1 (3)= MKB2

CALL CPROD (VECTAl ,VECTB1 ,MIC2,MJC2,MKC2)

* JOINT TWO EQUATIONS
* AA AG2 + (WD2 XRA/G2) +W2 X(W2X RA/G2)

VECTA2 ()=WDX (2)
VECTA2 () WY 2
VECTA2 (3) WDZ (2)
RAG2 (1) JX2 LCOGX (2
RAG2 ()=J2-LCOGY(2
RAG2 (3) JZ2 -LCOGZ (2)

CALL CPROD (VECTA2 ,RAG2 ,MIA3, MJA3 ,MKA3)
VECTA2 ()=W2 (1)
VECTA2 (2) = W (2)
VECTA2 (3) = W2 (3)

CALL CPROD (VECTA2 ,RAG2 ,MIB3 ,MJB3 ,MKB3)
VECTB2 (1) = MIB3
VECTB2 (2) = MJB3
VECTB2 (3)= MKB3

CALL CPROD(VECTA2 ,VECTB2 ,MIC3 ,MJC3 ,MKC3)
* AB AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)

VECTA2 (2) = WDYVET21 (3)ffVECTA2 (3) = WDZ (3)
RBG3 (1 JX2 LCOGX(3)
RBG_(2l =jy2 LCOGY 3
RBG3 (35 JZ2 -LCOGZ (3)

CALL CPROD (VECTA2 ,RBG3,MIA4,MKA4,MKA4)
VECTA2 (1) = W3 (1)
VECTA2 (2) = W3(2
VECTA2 (3) = W3 (3)

CALL CPROD (VECTA2 ,RBG3 ,MIB4 ,MJB4 ,MKB4)
VECTB2 ()=MB4
VECTB2 (2) MJB4
VECTB2 (3) MI{B4

CALL CPROD (VECTA2 ,VECTB2 ,MIC4 ,MJC4,MKC4)
* SUM OF MOMENTS EQUATIONS

DO 100 I = 1,3
* COMPUTE HX,HDOT X,HY,HDOT Y, EZ,HDOT Z

RX11 L1,1) * DCOS DRCRAX I)
RX ~ ~ 12=L,2 * COS CRAX f)

RYx "I, : LL 1, l1 * DCOSIDRCRAY 
11

RY 12 = L 1, 2 *DCOS DRCRAY I
RZ I,1 = -L 1,1 DCOS DRCRAZ I
RZI1,21 = LI1,2 DCOS DRCRAZI I

IXXHIf = SSJI,1 +*JP.Y 1,1 RYIfl I RZ 1,1 * RZ 1,1IXX M ASS 1,2 * RY I 2 *RY 12 +RZ 1,2 *RZ12



IXYil 11 =mASS (,1) *l~ RX1 RY( flIXYI =2 MASS(Ij2) RX1 2) *RY 1I 2)
IX () IXY( I,)+ IXY (1,2) R
IX'Z (1,1) MASS ( 1,1) RZ (1,1) RX(I,1)
IXZT(I) =IXZ(I,l) + IXZ (1,2)
HDX(1) = WDX(1) * IXX(I,1W WDZ(I) * IXZI,l) - WDY(I *X(I

HDX(2) =WDX(2 * IXX1,2 WDZ(I) * IXZ(I,2) -WDY(I* IXY(12)

Y(I,1) MASS (I~ ,1 *(RX(I,1) : RXI (11)) +(RZ(I ,1) RZI 1M)
IY(,)=MASS (1 2) RX(1 2 RX 1:2' + Z12 RI2

IYYT(I) =IYY(I,1) + IYY(I,2S ,, ZI,2 Z12,
IF (IYYT(I) .LE. .020) THEN
IYYT(I) = .020
ELSE
IYYT(I) = IYYT(I)
END IF
IYZ (1,1) MASS (1,1) RY (1,1) *Z p , B1
IYZI, HASSI,1 , R RZ ,2)
IYZT(I) =IYZ( l1) + IYZ (I,2)

HDY(1 = WDY(I * IYYI,1) :-WDX(I) * IXY(I,1 -wDzR *Iyz(I,1)
HDY(2) = WDY(I) * IYY(1,2 -WDX(I) * IXY(1 ,2) WDZ (I) * IYZ(I,2)
IZZ (1,1) = MASS (1,1 * (RX(I,1) * RX(I,1)) + (RY(I ,1) RY(I ,1)))
IZZ (1,2) = MASSR (2) * (3R( *2 RX 1 2' + ' '12',2'
IZZT (I) = IZZ(i,1) + 1 z(1,2) R~ ,1*R

IF (IZZT(I) .LE . .020) THEN
IZZT(I) = .0620
ELSE
IZZT (I) = IZZT(I)
END IF
HDZ(1) = WDZ(I) :*IZZ(I, :-WDX(I * IXZ(I ,1) WDY(I) * IYz(I,1
HDZ(2) = WDZ(I) *IZZI,2) -WDX(I) * IXZ 1,2) WDY(I) * IYZ(I fl

SUMHDX(I) HDBX(1 + HDX(2)
SUMHDYI HY(1) + HDY(
SUMHDZ(I) HDZ(1) + HDZ(2,

100 CONTINUE
* ENTER CONSTANTS INTO MATRIX A
* LINK ONE
* SUM OF FORCES IN THE X DIRECTION

AA1:,1) : 1.ODO
MATA 14 MASS1
MATA (1,10) = -1.ODO

* SUM OF FORCES IN Y DIRECTION

MATA (2) -1.ODO

MATA (,) MASS1
MATA (2,11) -1.ODO

* SUM OF FORCES IN Z DIRECTION

MATA( 3) : 1.ODO
MATA (6) MASS1
MATA (3,12)= -1.ODO

* EQUATIONS AT JOINT ZERO

* IN THE X DIRECTION

MATA (4) 1.ODO
MATA48)2 RBG1(3)MATA (4,9) =RBG1 (2)

* IN THE Y DIRECTION

MATA (55 =1ODO
MATA (,)=-RBG1 (3)
MATA (5,9)= REGi (1)
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* IN THE Z DIRECTION

MATK , RBG1 (2)
MATA (6,8) -REGi (1)

* SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS

MATA(7,2) = RBG1
MATA 7,) =-XT1
HATA 7,8) IXYT 1
MATA 7,9) = IXZT 1
MATA 7,11) = -RAG1 3
KATA17,12) = RAG1121
ATA(81 -RBG1 3

MATA 8) RBG1 1
MATA 8,) = IXYT 1
MATA 8,.8) = IYYT 1
HATA8 8,) = IYZT 1
MATA 8,10) = RAG1 3
MATA 8 ,12) = -RAGi11

M AA391) =REl 2jMATA92 RG

MATA9,8) IYZT +YZT(2) +IYZT(3)
MAT99 =-ZT IZZT (2) IZZT(3)
MATA91) -Ri2
MATA 9,11) RAGi 1

* LINK TWO
* SUM OF FORCES IN X DIRECTION

MATA (0,1) 1.000
MAPTA(10,13) = MASS2
MATA (10,M9 = -1.ODO

* SUM OF FORCES IN THE Y DIRECTION

NA'TA (11)= 1.000
MATA !i (1,4= MASS2
HATA (11,20) = -1.000

SUM OF FORCES IN THE Z DIRECTION

MATA (21)= 1.QDO
MA TA (12,15 = MASS2
ATA (12,21) = -1.ODO

* EQUATIONS AT JOINT ONE
* IN THE X DIRECTION

MATA(13,4) -1.000
MATA 1,) =-RAGi (3)MATA 13,9) RAG (2)
MATA 131)= 1.000
MATA 13,17) RBG2 (3)MATA113,18) -RBG2 (2)

* IN THE Y DIRECTION

MATAl1,5 -1.00
MATA 14,7) =RAGi (3)
HATA 14,9) -RAGi (1)
HATA 141)= 1.000
MATA 141) -RHG2 (3
MATA114,18) = RBG2(1

* IN THE Z DIRECTION

M-ATA(15,6) -1.000
MATA (,7) = -RAGi (2)
MATA (15,8) = RAGi (1)
MATA (15,15) = 1.000
MATA (15,16) =RBG2(2)
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HATA(15o17) = -RBG2(1)
SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X.Y.Z DIRECTIONS

MATA(16,11 = RBG2 3
MATA 16,12 -RBG2 2
MATA 16,16 -IXXT 2
MATA 16,17 IXYT 2
MATA 16,18 = IXZT 2
MATA 16,20 = -RAG2 3
MATA(16,21 = RAG2(2)

MATA(17,10 = -RBG2 3
MATA 17,12) RBG2 1
MATA 17,161 IXYT 2
MATA 17,17 -IYYT 2
MATA 17,18 IYZT 2
MATA 17,19 RAG2 3
MATA117,21 -RAG2(1)
MATA 18,10 = RBG2 2
MATA 18,11 -RBG2 1
MATA 18,16 IXZT 2 + IXZT(3
MATA 18,17 IYZT 2 + IYZT (3
MATA 18,18 -IZZT 2 - IZZT (3
MATA 18,19 -RAG2 2
MATA118,20 RAG2 1)

* LINK THREE

* SUM OF FORCES IN THE X DIRECTION

MATA(19,19) = 1.ODO
MATA (19,22 = MASS3

SUM OF FORCES IN THE Y DIRECTION

IATA(20,20) = 1.ODO
MATA(20,23) = MASS3

SUM OF FORCES IN THE Z DIRECTION

MATA(21,21) = 1.ODO
MATA(21,24) = MASS3

* EQUATIONS AT JOINT TWO
* IN THE X DIRECTION

MATA(22,13 = -1.ODO
MATA 22,17 = -RAG2(3)
MATA122,18 RAG2(2)
MATA 22,22 1.0DO
MATA 22,26 = RBG3(3)
MATA 22,27 -RBG3(2)

IN THE Y DIRECTION

MATA(23,14 -1.ODO
MATA 23,16 = RAG2(3)
MATA 23,181 -RAG2(1)
MATA 23,23 1.ODO
MATA 23,25 -RBG3(3)
MATA(23,27 RBG3(1)

IN THE Z DIRECTION

MATA(24,151 -1.0DO
MATA 24,16 -RAG2(2)
MATA(24,17 RAG2(1)
MATA 24,24 1.ODO
MATA 24,25 RBG3(2)
MATA 24,26 -RBG3 ()

SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS

MATA(25,20) = RBG3(3)
MATA (25,21 -RBG3(2)
MATA (25,25 = -IXXT (3)
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MA(25,"

MATA(25,271 IXZT(3)

MATA(26,191 = -RBG3(3)
MATA (26,21 RBG3(1)
MATA (26,25 _IXYT(3)
MATA (26,26 IYYT(3)
MATA 26,27 IYZT(3)

ATA(27,19 RAA(27,20 =-RBG31
MATA (27, IXZT(
MATA(27,26 IYZT
MATA(27,27 -IZZT(3

GO TO 1112
* INITIALIZE MATRIX ACCORDING TO CONSTRAINT
* CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION
* DO 118 I= 1,18
* DO 18 J 1,27
* MATA(I,J) = 0.0
* MATA(I I) = 1.0
* MATB(I = 0.0
*18 CONTINUE
*118 CONTINUE

* DO 181 I = 19,27
* DO 81J = 1,18
* MATA(I,J) = 0.0
*81 CONTINUE
*181 CONTINUE
* GO TO 1111
* CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
* DO191=1,9
* DO 191 J = 1,27
* 4MATA(I,J) = O.ODO
* MATA(I I) = 1.0 DO
* MATB (I = O.ODO

* MATA(17,J) = 0.ODO
* MATA (18J) = O.ODO
* MATB(175 = 0.ODO
* MATB (18) = 0.DO

* MATA(J,17) = 0.0D0
* MATA (J,18) = 0.ODO

* MATA(17,17) = 1.ODO
* MATA (18,18) = 1.ODO

*191 CONTINUE
*19 CONTINUE

* DO 91 1 = 10,27
* DO92J=I,9
* MATA(I,J) = 0.0
*92 CONTINUE
*91 CONTINUE
* GO TO 1111
* CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE iN MOTION

* DO 78 J = 1,27
* MATA7,J) = 0.ODO* I4ATA 8,J) = 0.0D0
* MATAIJ,7 = O.ODO
* MATA J 8 = O.ODO
* MATB 75 = O.ODO
* MATB 8) = 0.00
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* HATA(17,J) = O.ODO
* IIAMA A LJ U.LU

• MATA(J,17) = O.ODO
• MATA(J,18 = O.ODO
• MATB (17) O.ODO
• MATB(18) = O.ODO

* MATA(26,3) = 0.0DO
• MATA 27,) O.ODO
• MATAJ,26) O.ODO
* MATA J,27 = 0.00
* MATB 26) = O.ODO
• MATB 27) = 0.00
• MATA (7,7) = 1.0D0
* HATA(8.8) = 1.ODO
• MATA117,17) = 1.ODO
* MATA 18,18) = 1.ODO
* MATA 26,26 = 1.00
* MATA 27,27 = 1.00
*78 CONTINUE
• CONSTRAINT GROUP 4 THE FIRST LINK IS CONSTRAINED TO ROTATE IN Z DIR.

1112 DO 48 I = 4,8
DO 481 J = 1,27

MATA(I,f) = 0.00
MATA (II) = 1.0 DO
MATB (I = O.ODO

481 CONTINUE
48 CONTINUE

DO 84 I = 9,27
DO 841 J = 4,8

MATA(IJ) = 0.0
841 CONTINUE
84 CONTINUE

* USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
* IN X DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION
* ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
• IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE X DIRECTION
• LINK TWO
* THEORITICAL ANGULAR VELOCITIES (APPLIED IN THE X DIRECTION)

MATB(18)
MATE(17) 

.00.0D0
MATB(16 -((PI**3) / 8.00) * DSIN(W * TIME)
THDDOT = MATB(16)
THTDOT INTGRL((PI**2)/4.,THDDOT)
THETRB INTGRL(O.,THTDOT)
THETAB THETRB * RADEG

* LINEAR VELOCITIES

MATB ( (THDDOT *RBG2(2)) + (THTDOT ** *RBG23)
MATB(14) = (THDDOT * RBG2(3 + (THTDOT ** 2* RBG2(2
MATB(13 = 0.00

LINK THREE
ANGULAR VELOCITIES

MATB(27) = 0.ODO
MATB (26 = 0.00
MATB (25 = 0.00

* LINEAR VELOCITIES

MATB(24 = MATB 15) (THDDOT*RAG2(2)) (THTDOT**2)*(RAG2(3))
MATB (23) MAT (14- (THDDOT*RAG2 (3 (THTDOT**2 )*(RAG2 (2
HATB(22 = MATB 13

END OF THE INFORMATION FOR X DIRECTION
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* USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
* IN THE Y DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION

* ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Y DIRECTION

* LINK TWO
* THEORITICAL ANGULAR VELOCITIES(APPLIED IN THE Y DIRECTION

MATB (18) = O.ODO
* MATB (17) = ((-PI**3)/8)*SIN(W*TIME)
* MATB(16) = O.ODO
* THDDOT = MATB(17)
* THTDOT = INTGRL((PI**2)/4.,THDDOT)
* THETRB = INTGRL (0,INTGRL(PI**2/4.,THDDOT))
* THETAB = THETRB * RADEG
* LINEAR VELOCITIES

* MATB(15) (THDDOT * RBG2(1)) + (THTDOT ** 2) * RBG2(3)
* MATB(14) = 0.ODO
* MATB(13) = -(THDDOT * RBG2(3)) + (THTDOT ** 2) * RBG2(1)

* LINK THREE
* ANGULAR VELOCITIES

* MATE(27) = O.ODO
* MATB(26) = O.ODO
* MATB(25) = O.ODO

* LINEAR VELOCITIES

* MATB(24) = MATB(5)-(THDDOT*RAG2(1))-(THTDOT**2)*(RAG2(3))
* MATB(23 = MATB 14
* MATB(22 = MATB(13 )+(THDDOT*RAG2(3))-(THTDOT**2)*(RAG2(1))

* END OF THE INFORMATION FOR THE Y DIRECTION

* USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
* IN THE Z DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION

* ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE
* IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Z DIRECTION

* LINK TWO
* THEORITICAL ANGULAR VELOCITIES(APPLIED IN THE Z DIRECTION
* MATB(16) = O.ODO
* MATE(17) = O.ODO
* MATB(18) = -((PI**3) / 8.ODO) * DSIN(W * TIME)
* THDDOT MATB(18)
* THTDOT = INTGRL((PI**2)/4.,THDDOT)
* THETRB = INTGRL(0.,THTDOT)
* THETAB = THETRB * RADEG

* LINEAR VELOCITIES

*MATE(14) = (THDDOT *RBG2(1)) + (THTDOT**2) * REG2(2)
* MATB(13 = (THDDOT * RBG2 2 + THTDOT ** * RBG2(1)
* MATB(15 = O.ODO

* LINK THREE
* ANGULAR VELOCITIES

* MATE(27) = O.ODO
* MATB(26) = O.ODO
* MATB(25 = O.ODO
* LINEAR VELOCITIES

* MATB(24) = MATE(15)
* MATB(23 = MAT (14)+(THDDOT*RAG2(1) -(THTDOT**2)*(RAG2 (2)

* MATE (22) = MATE (13)-R(HDDOT*RAG2 (2))- (THTDOT**2)* (RAG2 (1

* END OF THE INFORMATION FOR THE Z DIRECTION

* NEXT SET OF STATEMENTS ARE COMMON IN ANY PLANAR MOTION AND THEY ARE

IN YHE CODE IN EVERY CASE. THESE TERMS ARE ACCELERATION OF THE LINK
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* ONE AND FORCES AT EACH JOINT
*LINK ONE LINEAR AND ANGULAR ACCELERATIONS

KATB11 4 =O.DO
MATE 5 DO
MATB 161 O.ODO
MATS 7 =O.ODO
MATS 8 =O.ODO
MATB 9 = .ODO

*FORCES
* JOINT TWO

MATE (21) = -MASS3 * ATS(4 G
MATB (20) = -MASS3 * AT 23)
MATS (19) = -MASS3 *MATS (22)

* JOINT ONE

MATE (12) = MATB (21) MASS2 *MATB (15) -WG2
MATS (11) = MATS(0 MASS2 *MATB (14)
MATS(10O) MATS(19) MASS2*MATB(13)

* JOINT ZERO

MATE (3) = MATBM12 MASSi MATS (6) -WG1
MATS( 2) = MATS(11) MASSI* MATS(S)
MATS( 1) = MATS(10) MASSi MATS (4)

*END OF THE INFORMATION
*MULTIPLY MATA AND MATS

DO 505 J =1,27
SUM1 0.0

DO 555 K = 1,27
SUMi = SUI41 + MATA(J,K) *MATB(K)

555 CONTINUE
DQ(J) = SUM1

505 CONTINUE
DO 506 I =1,27

MATC(I) = DQ(I)
506 CONTINUE

* CALL EQUATION SOLVER PROGRAM FROM IMSL

CALL LEQT2F(MATA,M,NIA,DQ,IDGT,WKAREA,IER)
* IF (IER .ME. 0) CALL ENDJOB
* FIND LCOGX,LCOGY,LCOGZ,THETA VALUES,WX,WY,WZ
* LINK ONE

AXi = DQ (4)
VELX1 = I TGRL(O.,AX1)
LCOGX1 = INTGRL (X1,VELX1)
LCOGX(l) = LCOGX1
AY1 , = DQ (5
VEL71 = INTGRL (O.AY1)
LCOGY1 = INTGRL (Y1VELY1)
LCOGY(1) = LCOGY1
AZi, = DQ (6)
VELZ1 = INTGRL(O.,AZ1)
LCOGZ1 =INTGRL (Z1,VELZ1)
LCOGZ(1) = LCOGZ1
WDlX = DQ (7)
Wix = I TGRL(O.,WDlX)
WDX(1) = WDIX
W1(1) = Wix
WD1Y = r)9(8)
WlY= ItNTGRL(O. ,WD1Y)
WDY (1) = WDlY
W1( 2) =WY
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wiz= INTGRL(O.,WDlZ)
WDZ(1) =WDIZ
W1(3) =w1Z

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
*SYSTEM FOR THE LINK ONE

MAT1R(l,1) = DCOS(RLRZ1) * DCOS(PTRYI)
MAT1R(2 1) = DCOS(RLRZ1) * DSIN(FTRY1) * DSIN(YWRX1)
DSIN(RLRZ1) * DCOS(YWRX1)
MATIR(3 1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) +.

DSIN(RLRZ1) * DSIN(YWRX1)
MAT1R(1,2) = DSIN(RLRZ1) * DCOS(PTRY1)
MAT1R(2,2) = DSIN(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1) +

DCOS(RLRZ1) * DCOS(YWRX1)
MATlR(3,k2) =DSIN(RLRZ1) *DSIN(PTRY1) * DCOS(YWRX1)
DCOS(RLRZ1) DSIN(YWRX1)
MATlR(1,3) =-DSIN(PTRY1)
MATlR(2,S) =DCOS(PTRY1) *DSIN(YWRX1)
MATlR(3,3) DCOS(PTRYI) *DCOS(YWRXI)

* GET THE VELOCITIES FOR LINK 1 IN BODY FIXED COOR. SYSTEM
Do 605 J = 1,3

SUMI = O.ODO
DO 606 K =1,3

SUM1 SUMi + MAT1R(J,K) * W1(K)
606 CONTINUE

BRATE1(J) =SUM1
605 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COORDINATE
SYTE FO±R1 !HE±ri LINK ONE

MATIT = O.ODO =Y0R00

MATlT 2,2 = 1OTA TY1 *DINYR1

MATiT 3,2 = .ODO/DO(TY)' SNYR1
MATiT (13 OSNYWRX1)
MATiT (23 = TAN(PTRY1) * DCS(YWRX1)

MATiT (3,3 1.00DCOS(PTRY1) * DCOS(YWRXI)
* GET THE YAW,PITCH AND THE ROLL RATES FOR LINK CNE

DO 705 J = 1,3
SUMI = O.ODO

DO 706 K = 1,3
SUM1 SUM1 + MATT(J.K) BRA:--

706 CONTINUE
RATE1(J) =SUMI

705 CONTINUE
RATEIX = RATE1~1 1
RATElY = RATEI12
RATEIZ =RATEI(;
YWRXI = IT PR
PTRY1

YAW.ANX
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DRCSX(1) = DSIN(RLRZ1) *DSIN(PTRY1) *DCOS(YWRX1)
DCOS(RLRZ1) * DSIN(YWRX1)
DRCSZ(l) = DCOS(PTRY1) * DCOS(YWRX1)

* GET THE ANGLES AS RADIANS

DRCRA (1) DACOS (DRCSX (1)
DRCA 1 DACOS (DRCSY (1)
DRCRAZ(1) DACOS (DRCSZ (1))

* CONVERT THE DIRECTION COSINES TO DEGREES

DRCANXl l (1 DACOS (DRCSX(l) RADEG
DRCANY 1) = DACOS (DRCSY(1) RADEG
DRCANZ 1) = DACOS(DRCSZ(1)) RADEG

*LINK TWO

9AX2 =DQ(13)RL
VELX2 INGL(.AX2)
LCOGX2 = INTGRL (X2,VELX2)
LCOGX(2) = LCOGX2
AY2 = DQ (14)
VELY2 = INTGRL (O.,AY2)
LCOGY2 = INTGRL (Y2,VELY2)
LCOGY(2) = LCOGY2
AZ2 = DQ(15)
VELZ2 = INTGRL(O. ,AZ2)LCOGZ2 = INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2
WD2X = DQ (16)
W2X = INTGRL((PI**2)/4.,WD2X)

* USE THE INIT. COND. WITH ONLY WHICHEVER VELOCITY APPLIED
* AND KEEP THE TWO OTHER ANG. VEL. INIT. COND. AS ZERO
* USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE X DIR.

THETRD = INTGRL(O.,W2X)
WDX(2) = WD2X
W2(1) = W2X
WD2Y = DQ (17)
W2Y = INTGRL(O.,WD2Y)

* USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Y DIR.
* THETRD =INTGRL(O.,W2Y)

WDY (2) =WD2Y
W2( 2) =W2Y

WD2Z =DQ(18)
W2Z I NTGRL(O.,WD2Z)

* USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Z DIR.
* THETRD =INTGRL(O.,W2Z)

WDZ (2) = WD2Z
W2( 3) =W2Z
THETAD =THETRD * RADEG
ERROR =ABS(((THETAD-THETAB)/180.) * 100)

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
* SYSTEM FOR THE LINK TWO

?4AT2R(l,1) = DCOS(RLRZ2) * DCOS(PTRY2)
MAT2R( 2,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -.

DSIN( (LRZ2) * DCOS(YWRX2)
MAT2R(3,1) DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +.
DSIN(RLRZ 2) * DSIN(YWRX2)
MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)
MAT2R(2,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +.
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DCOS(RLRZ2) *DCOS(YWRX2)

MAT2R(3,2~ DSIN RLRZ21 * DSIN(PTRY2) *DCOS(YWRX2)

MAT2R(1,3) = -DsIN(PTRYZ)
MAT2R(2,3) = DCOS(PTRY2) * DSIN(YWRX2)
MAT2R(3,3) = DCOS(PTRY2) * DCOS(YWRX2)

* GET THE VELOCITIES FOR LINK 2 IN BODY FIXED COOR. SYSTEM

DO 607 J = 1,3
SUM1 = O.ODO

DO 608 K=1,
SUMl = SUMI + MAT2R(J,K) * W2(X)

608 CONTINUE
BRATE2(J) = SUM1

607 CONTINUE
* TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COOR. SYSTEM
* FOR THE LINK TWO

MAT2TR(11) O.ODO
MAT2T (,)=1.000
MAT2T (3,1) O.ODO
MAT2T (,)=DCOS (YWRX2)
MAT2T (2,2) DTAN (PTRY2) * DSIN(YWRX2)
MAT2T (3,2) 1.ODO/DCOS(PTRY2) *DSIN(YWRX2)

MAT2T (13) -DSIN(YWRX2)
MAT2T2 (, 3) DTAN (PTRY2) * DCOS (YWRX2)
MAT2T (3,3) = .ODO/DCOS(PTRY2) * DCOS(YWRX2)

* GET THE YAW,PITCH AND THE ROLL RATES FOR LINK TWO

DO 707 J=1,3
SUMi = O.ODO

DO 708 K =1,3
SUMi = 5UM1 + MAT2T(J,K) * BRATE2(K)

708 CONTINUE
RATE2(J) =SUM1

707 CONTINUE
RATE2X = RATE2(1
RATE2Y = RATE (2)
RATE2Z = RATE2 (3)

* USE THE NEXT THREE STATEMENTS FOR CASE A

YWRX2 = INTGRL ( .,,RATE2X)
PTRY2 = INTGRL (0.,RATE2Y)
RLRZ2 = INTGRL (-PI/2.,RATE2Z)

* USE THE NEXT THREE STATEMENTS FOR CASE B
* YWRX2 = INTGRL (0.,RATE2X)
* PTRY2 = INTGRL (O.,RATE2Y)
*RLRZ2 = INTGRL(PI/2.,RATE2Z)

* USE THE NEXT THREE STATEMENTS FOR CASE C
*YWRX2 = INTGRL (0.,RATE2X)
*PTRY2 = INTGRL (.,RATE2Y)
*RLRZ2 = INTGRL( O.,RATE2Z

RATE2 ()=RATE2X
RAE2 (2) RATE2Y

RATE2 (3) RATE2Z
YAWANX (2) YWRX2 *RADEG
PTCANY ()=PTRY2 *RADEG
ROLANZ (2) RLRZ2 *RADEG

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE A

DRCSY(2) =DCOS (RLRZ2) * DSIN(PTRY2) * DSIN(YWRXZ)
DSIN(RLRZ2) * DCOS( YWRX2)
DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRXZ) ..
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DCOS(RLRZ2) * DCOS(YWRX2)
DRCSZ(2) - DCOS(PTRY2) * DSIN(YWRX2)

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE B

*DRCSY(2) = DCOS(RLRZ2) * DCOS(PTRYZ)
*DRCSX(2) 0 DSIN(RLRZ2)*DCOS(PTRY2)

*DRCSZ(2) - -DSIN(PTRY2)
* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE C

* DRCSY(Z) = DCOS(RLRZ2) *DSIN(PTRY2) * DCOS(YWRX2) 4*
* DSIN (RLRZ2) * DSIN(YWlX2)

* DRCSX(2) =DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2)
* DCOS (RLRZ2) * 0 IN(YWRX2)
* DRCSZ<2) = DCOS(PTRY2) * DCOS(YWRX2)

* GET THE ANGLES AS RADIANS

DRCIRAXl (2: DACS (DRCSX ()
DCRY) DACS (DfCY(2)
DRCRAZ (2)= DACOS (DRCSZ 2)

* CONVERT THE DIRECTION COSINES TO DEGREES

DRCANX(2) = DACO(RCX2) * RADEG
DRCANY (2 = DACSZ(DRCY(2)) * RADEG
DRCANZ (2) = DACOS (DRCSZ (2)* RADEG

* FIND THE JOINT LOCATION
JX1 = (L(1,1) + L(1,2)) DCOS (DRCRAX(1)
Jyl = (L(1,1) + L(1,2)* DCOS(DRCRA()
JZ1 = (L(1,1) + L(1,2) * COS (DRCRAZ(1)

* LINK THREE

6 AX3 =DQ(22)

VELX3 = INTGRLq (O.AX3)
LCOGX3 = INTGR 3VELX3)
LCOGX(3) = LCOGX3
AY3 =Q jS23)
VELY3 = NGRL(O.,AY3)
LCOGY3 =INTGRL (Y3,VELY3)
LCOGY(3) = LCOGY3
AZ3 = DQ (24)
VELZ3 = INTGRL (O.,AZ;3)
LCOGZ3 = INTGRL (Z3,VELZ3)
LCOGZ(3) = LCOGZ3

W3X =I ?4GR(O.,WD3X)

WDX(3) = WD3X
W3(1) - W3X

W3Y
WDY(3) =WD3Y
W3() = W3Y

W3Z : I~GR(O.,WD3Z)

WDZ(3) - WD3Z
W3( ) = W3Z

* TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COOR. SYSTEM
* FOR THE LINK THREE

MAT3R(l,l) xDCOS(RLRZ3) * DCOS(PTRY3)
MAT3R2,1) a DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3)
DSIN( RLRZ3 * COS (YWRX3)
MAT3R(3,1) =DCOS(R.LRZ3) * DSIN(PTRY3) * DCOS(YWRX3) +.
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DSIN(RLRZ3) * DSIN(YWRX3)
MAT3R(1,2) =DSIN(RLRZ3) * DCOS(PTRY3)
MAT3R(2,2 = DSIN(RLRZ3) * DS IN(PTRY3) * DSIN(YWRX3) +.

t DCOS (PTL'3 * DCOS(YWRX3)

MAT3R(3,2) DSIN %RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3)
DCOS(RLRZ3) * DSI (YWRX3)
MAT3R(1,3) = -DSIN(PTRY3)
?IAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
MAT3R(3,3) =DCOS(PTRY3) * DCOS(YWRX3)

* GET THE VELOCITIES FOR LINK 3 IN BODY FIXED COOR. SYSTEM
DO 609 J = 1,3

SUMI = O.ODO
DO 610 K = 1,3

SUM1 SUM1 + MAT3R(J,K) * W3(K)
610 CONTINUE

BRATE3(J) =SUM1
609 CONTINUE

* TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COOR. SYSTEM
* FOR THE LINK THREE

MAT3T(11 0.ODO
MAT3T(21 1.0D0
MAT3T(3,1) 0.ODO
MAT3T(1,2) DCOS (YWRX3)
MAT3T(22 DTAN (PTRY3) *DSIN (YWRX3)
MAT3T(3,2) 1.ODO/DCOS(PTRY3) * DSIN(YWRX3)
MAT3T(1,3) = -DS IN PWH *DO(YWRX3)
MAT3T~23 DTAN~ CSYR3~WX

* GET THE YAW,PITCH AND THE ROLL RATES FOR LINK THREE

DO 709 J = 1,3
SUM1 = 0.ODO

DO 710 K = 1,3
SUM1 SUM1 + MAT3T(J,K) *BRATE3(K)

710 CONTINUE
RATE3(J) =SUMi

709 CONTINUE
RATE3X = RATE3(1
RATE3Y = RATE3 (2)
RATE3Z = RAEH3 (3)

* USE THE NEXT THREE FOR THE CASE A

YWRX3 = INTGRL (0.,RATE3X)
PTRY3 = INTGRL( 0.,RATE3Y)
RLRZ3 =INTGRL (-P/2. ,RAIE3Z)

* USE THE NEXT THREE FOR THE CASE B
* YWPJC3 = INTGRL ( .,RATE3X
* PTRY3 = INTGRL( (0.RTE3Y
* RLRZ3 = INTGRL (Pi/2.,RATE3Z)

* USE THE NEXT THREE FOR THE CASE C
* YWRX3 - INTGRL ( 0.RATE3X)
*PTRY3 uINTGRL ( 0.,RATE3Y)
* RLRZ3 = INTGRL (0.,RATE3Z)

YAWANX (3 = YWRX3 *RADEG
PTCANY (3) a PTRY3 *RADEG
ROLANZ (3) = RLRZ3 *RADEG

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE A
DRCSY(3) =DCOSRLRZ3) * DSIN(PTRY3) *DSIN(YWRX3)
DSrN (RLRZ3) *DCOS(YWRX3)
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DRCSX(3) =DSIN(RLRZ3) *DSIN(PTRY3) *DSIN(YWRX3)+...
DCOS(RLRZ3) * DCO(YWRX3)

UE DRCSZ(3) - DCOS(PTRY3) * DSIN(YWRX3)

UETHE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE B

* DRCSY(3) - DCOS(RLRZ3) * DCOS(PTRY3)

* DRCSX(3) = DSIN(RLRZ3)*DCOS(PTRY3)

* DRCSZ(3) = -DSIN(PTRY3)

* USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE C

*DRCSY(3 - DCOS (RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3)+...
* DSIN(RLRZ3) * D IN(YWRX3)

* DRCSX(3) DSIN (RLRZ3) * DSIN(PTRY3) * DCOS(R3)-...
* DCOS( RLL3) * DSIN(YWRX3)

* DRCSZ(3) = DCOS(PTRY3) * DCOS(YWRX3)

*GET THE ANGLES AS RADIANS
DRCRAX ()=DCS(RS()
DRCRAY(3=DAS(RCY3)
DRCRAZ (3) - DACOS (DRCSZ (3)

* CONVERT THE DIRECTION COSINES TO DEGREES

DRCA X (3 = D COS DRCS (3) * RADEG
DRCN(3 DACOS(RS() * RADEG
DRCANZ (3) DACOS (DRCSZ (3) * RADEG

* FIND ANGLE BETWEEN LINK 2 AND LINK 3 TO CHECK IF THE ARM LINKS
* are PASSING THROUGH THE SINGULAR POINTS

ANG23X = DRCA!NX (2) -DRCAN (3)
ANG23Y = DRCANY (2) DRCA (3)
ANG23Z = DRCANZ (2) DRCANZ (3)
ANG12X o DRCAX 1) - DRCANX (2)
ANG12Y = DRCN(1- DRCAN (2)
ANG12Z = DRCANZ (1) DRCANZ (2)

* FIND THE JOINT LOCATION

JX2 =JX1 + .L( 1) +L 22 * DCOSDRRAX(2))
JY2=JY1 + (L (2:1) + L 2:2 *DCO(RAY2
JZ2 =JZ1 + *L (2,1) + L(22 * DCOS(DRCRAZ 2)

TIPX = JX2 + (L31 : (,) * DCOS (DRCRAX(3)
TIPY = JY2 + L3:1 (,) * DCOS (DRCRAY3))
TIPZ = JZ2 + (L(3,1) + L(3,2) * DCOS (DRCRAZ (3)

END
STOP
FORTRAN

* SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS

SUBROUTINE CPROD(VECTA,VECTB,MI ,MJ,HK)
IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3) ,VCTB(3)
MI wVECTA2 *VECB(3 VCA VCB2
MJ aVECTA3f * VECB ECCT7 VCB3)
MK =VECTA1) VECTB 2) VECTA(2) VECTB 1)

RETURN
END
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